Home
Class 10
MATHS
Evaluate sinthetacos(90^(@)-theta)+costh...

Evaluate `sinthetacos(90^(@)-theta)+costhetasin(90^(@)-theta)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin \theta \cos(90^\circ - \theta) + \cos \theta \sin(90^\circ - \theta) \), we can follow these steps: ### Step 1: Use the co-function identities We know from trigonometric identities that: - \( \cos(90^\circ - \theta) = \sin \theta \) - \( \sin(90^\circ - \theta) = \cos \theta \) ### Step 2: Substitute the identities into the expression Now, we can substitute these identities into the original expression: \[ \sin \theta \cos(90^\circ - \theta) + \cos \theta \sin(90^\circ - \theta) = \sin \theta \sin \theta + \cos \theta \cos \theta \] ### Step 3: Simplify the expression This simplifies to: \[ \sin^2 \theta + \cos^2 \theta \] ### Step 4: Apply the Pythagorean identity According to the Pythagorean identity, we know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] ### Final Result Thus, the value of the expression \( \sin \theta \cos(90^\circ - \theta) + \cos \theta \sin(90^\circ - \theta) \) is: \[ \boxed{1} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN|Exercise PROBLEMS FROM NCERT/ EXEMPLAR|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

Write the value of sintheta cos(90^(@)-theta)+costheta sin(90^(@)-theta).

sin theta cos(90^@ -theta) +cos theta sin(90^@ -theta) = ?

Find the value of costhetacos(90^(@)-theta)-sinthetasin(90^(@)-theta)

Prove that :(sin theta cos(90^(0)-theta)cos theta)/(sin(90^(0)-theta))+(cos theta sin(90^(0)-theta)sin theta)/(cos(90^(@)-theta))=1csc^(2)(90^(@)-theta)-tan^(2)theta=cos^(2)(90^(@)-theta)+cos^(2)theta

Find the value of sin theta xxcos (90-theta) +cos thetaxx sin (90-theta) .

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Prove that : (i) sinthetacos(90^(@)-theta)+sin(90^(@)-theta)costheta=1 (ii) sectheta" cosec"(90^(@)-theta)-tanthetacot(90^(@)-theta)=1 (iii) (sintheta*sec(90^(@)-theta)cot(90^(@)-theta))/("cosec"(90^(@)-theta)*costheta*tantheta)-(tan(90^(@)-theta))/(cottheta)=0 (iv) (1+sin(90^(@)-theta))/(cos(90^(@)-0))+(cos(90^(@)-theta))/(1+sin(90^(@)-0))=2"cosec"theta

Evaluate : sin theta cos theta - (sin theta cos (90^(@) - theta) cos theta)/( sec (90^(@) - theta)) - (cos theta sin (90^(@) - theta) sin theta)/( cosec (90^(@) - theta))