Home
Class 12
MATHS
Prove that tan^(-1) x + cot^(-1) (x+1) ...

Prove that `tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1)`.

Text Solution

AI Generated Solution

To prove that \( \tan^{-1} x + \cot^{-1} (x+1) = \tan^{-1} (x^2 + x + 1) \), we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step 1: Write the LHS We start with the left-hand side: \[ LHS = \tan^{-1} x + \cot^{-1} (x + 1) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2a|30 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2b|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

prove that tan^(-1)x+cot^(-1)x=pi/2

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan^(-1)(cot x)+cot^(-1)(tan x)=pi-2x