Home
Class 12
MATHS
Solve the following equation: sin^(-1)x+...

Solve the following equation: `sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x`

Text Solution

Verified by Experts

`sin^(-1) x + sin^(-1) (1-x) = cos^(-1)x `
`rArr " "sin[xsqrt(1-(1-x)^(2)) +(1-x)sqrt(1-x^(2))]= sin ^(-1)sqrt(1-x^(2))`
`rArr xsqrt(2x-x^(2)) + sqrt(1-x)- xsqrt(1-x^(2)) = sqrt(1-x^(2))`
`rArr " "xsqrt(2x-x^(2)) + xsqrt(1-x^(2)) = 0`
`rArr" "x[sqrt(2x-x^(2)) -sqrt(1-x^(2))]=0`
`rArr x = 0 or sqrt(2x-x^(2))-sqrt(1-x^(2))=0` Now `sqrt(2x-x^(2))-sqrt(1-x^(2)) = 0`
`rArr" "sqrt(2x -x^(2)) = sqrt(1-x^(2))`
`rArr" "2x -x^(2) = 1- x^(2)`
`rArr " "2x =1`
`rArr " " x=1//2`
` therefore " "x=0 or x = 1//2`
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2a|30 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2b|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations : sin^(-1)(x^(2)-2x+3)+cos^(-1)(x^(2)-x)=(pi)/2

Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

Solve the following equations: sin^(-1)(3x)/(5)+sin^(-1)(4x)/(5)=sin^(-1)xsin^(-1)6x+sin^(-1)6sqrt(3)x=(pi)/(2)

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the following equations : cos (sin^(-1) x) = 1/2

Solve sin^(-1)x<=cos^(-1)x

Solve the following equations : cos (tan^(-1) x ) = sin (cot^(-1). 3/4)

Solve the following equation for x:cos(tan^(-1)x)=sin((cot^(-1)3)/(4))tan(cos^(-1)x)=sin((cot^(-1)1)/(2))

Solve the following equation: 2sin^(2)x+sqrt(3)cos x+1=0

The number of solutions of the equation sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x is