Home
Class 12
MATHS
sin^(-1) (sin=(2pi)/(3)) = ?...

`sin^(-1) (sin=(2pi)/(3)) = ?`

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(2pi)/(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin^{-1}(\sin(\frac{2\pi}{3})) \), we can follow these steps: ### Step 1: Understand the function The function \( \sin^{-1}(x) \) is the inverse sine function, which gives us an angle whose sine is \( x \). The range of \( \sin^{-1}(x) \) is \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). ### Step 2: Identify the angle We start with the angle \( \frac{2\pi}{3} \). We need to find the sine of this angle: \[ \sin\left(\frac{2\pi}{3}\right) \] ### Step 3: Use the sine identity Using the identity \( \sin(\pi - x) = \sin(x) \), we can rewrite \( \frac{2\pi}{3} \): \[ \frac{2\pi}{3} = \pi - \frac{\pi}{3} \] Thus, \[ \sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) \] ### Step 4: Calculate sine value Now we know: \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] ### Step 5: Substitute back into the inverse sine function Now we can substitute this back into the inverse sine function: \[ \sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \] ### Step 6: Find the angle in the range of inverse sine The angle whose sine is \( \frac{\sqrt{3}}{2} \) that lies within the range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) is: \[ \frac{\pi}{3} \] ### Final Answer Thus, we have: \[ \sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) = \frac{\pi}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2a|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(sin((pi)/(3)))=

What is the value of sin^(-1)("sin"(2 pi)/(3)) ?

Find the value of sin^(-1)(sin(2 pi)/(3))

The principal value of sin^(-1)(sin((2 pi)/(3))) is (a)-(2 pi)/(3) (b) (2 pi)/(3) (c) (4 pi)/(3) (d) (5 pi)/(3) (e) none of these

What is the principal value of cos^(-1)cos((2 pi)/(3))+sin^(-1)sin((2 pi)/(3))?

Evaluate each of the following: sin^(-1)((sin(2 pi))/(3))( ii) cos^(-1)((cos(7 pi))/(6))( iii) tan^(-1)((tan(3 pi))/(4))

Evaluate each of the following: sin^(-1)(sin(pi)/(3)) (ii) cos^(-1)(cos(2 pi)/(3))tan^(-1)(tan(pi)/(4))(iv)sin^(-1)(sin(2 pi)/(3))cos^(-1)(cos(7 pi)/(7))(vi)tan^(-1)(tan(3 pi)/(4))sin^(-1)(cos(-600^(@))cos^(-1)(cos(-680^(@)))

sin ^ (- 1) (sin ((2 pi) / (3)))

sin ^ (- 1) (sin ((2 pi) / (3)))

Write the principal value of cos^(-1)(cos(2 pi)/(3))+sin^(-1)(sin(2 pi)/(3))