Home
Class 12
MATHS
sec^(2) (tan^(-1) 4) + cosec^(2) (cot ^(...

`sec^(2) (tan^(-1) 4) + cosec^(2) (cot ^(-1) 3) =?`

A

30

B

29

C

27

D

25

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sec^2(\tan^{-1} 4) + \csc^2(\cot^{-1} 3) \), we will follow these steps: ### Step 1: Rewrite the expressions using inverse trigonometric functions We start with the expression: \[ \sec^2(\tan^{-1} 4) + \csc^2(\cot^{-1} 3) \] ### Step 2: Let \( \theta = \tan^{-1}(4) \) From the definition of the tangent function, we have: \[ \tan(\theta) = 4 \implies \frac{\text{opposite}}{\text{adjacent}} = \frac{4}{1} \] Using the Pythagorean theorem, we can find the hypotenuse: \[ \text{hypotenuse} = \sqrt{4^2 + 1^2} = \sqrt{16 + 1} = \sqrt{17} \] ### Step 3: Calculate \( \sec^2(\theta) \) Since \( \sec(\theta) = \frac{1}{\cos(\theta)} \) and \( \cos(\theta) = \frac{1}{\sqrt{1 + \tan^2(\theta)}} \): \[ \sec^2(\theta) = 1 + \tan^2(\theta) = 1 + 4^2 = 1 + 16 = 17 \] ### Step 4: Let \( \phi = \cot^{-1}(3) \) From the definition of the cotangent function, we have: \[ \cot(\phi) = 3 \implies \frac{\text{adjacent}}{\text{opposite}} = \frac{3}{1} \] Using the Pythagorean theorem, we can find the hypotenuse: \[ \text{hypotenuse} = \sqrt{3^2 + 1^2} = \sqrt{9 + 1} = \sqrt{10} \] ### Step 5: Calculate \( \csc^2(\phi) \) Since \( \csc(\phi) = \frac{1}{\sin(\phi)} \) and \( \sin(\phi) = \frac{1}{\sqrt{1 + \cot^2(\phi)}} \): \[ \csc^2(\phi) = 1 + \cot^2(\phi) = 1 + 3^2 = 1 + 9 = 10 \] ### Step 6: Combine the results Now we can combine the results from Steps 3 and 5: \[ \sec^2(\tan^{-1} 4) + \csc^2(\cot^{-1} 3) = 17 + 10 = 27 \] ### Final Answer Thus, the final answer is: \[ \boxed{27} \]
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2a|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

sec^(2) ( tan^(-1)2) + cosec^(2) ( cot^(-1)3) =

sec^(2) (tan^(-1) 2) + cosec^(2) (cot^(-1) 3) is equal to

sec^(2)(tan^(-1)2) + "cosec"^(2)(cot^(-1)3)=

sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=

Prove that sec^(2) (tan ^(-1) 3) + cosec^(2)(cot^(-1)2) = 15

The numerical value of sec^(2)(tan^(-1)2) + cosec^(2)(cot^(-1)3) =______.

The value of sec^(2)(tan^(-1)2)+cosec^(2)(cot^(-1)3) is

Evaluate the following : tan^(2) ( sec^(-1) 2) + cot^(2) ( cosec^(-1) 3) .

The value of tan^(2) (sec ^(-1) 2) + cot^(2) (cosec^(-1) 3) is equal to