Home
Class 12
PHYSICS
The Bohr model for the H-atom relies on ...

The Bohr model for the H-atom relies on the Coulomb's law of electrostatics . Coulomb's law has not directly been varified for very short distances of the order of angstroms. Suppos-ing Coulomb's law between two oppsite charge `+q_(1),-q_(2)` is modified to `|vec(F)|=(q_(1)q_(2))/((4piepsilon_(0))r^(2))1/r^(2),rgeR_(0)`
` =(q_(1)q_(2))/((4piepsilon_(0))r^(2))1/R_(0)^(2)(R_(0)/r)^(epsilon), rleR_(0)`
Calculate in such a case , the ground state enenergy of H-atom , if `epsilon= 0.1,R_(0)=1Å`

A

`-11.4`

B

`-17.3`

C

`5.9`

D

`-23.2`

Text Solution

Verified by Experts

The correct Answer is:
A

Given `epsilon=0.1,R_0=1Å`, Let `epsilon=2+delta`
In case of H-atom ,
`(q_1q_2)/(4piepsilon_0)=(1.6xx10^(-19))^2 (9xx10^9)=2.3xx10^(-28) N m^(2)`
It is given that `(1/R_0^2)(R_0/r)^epsilon=(1/R_0^2)(R_0/r)^(2+delta)=(R_0^delta)/r^(2+delta)`
Thus, `F=(xR_0^delta)/r^(2+delta) " " (because x=(q_1q_2)/(4piepsilon_0))`
As `F=(mv^2)/rimplies (mv^2)/r=(xR_0^delta)/(r^(2+delta) " " or " " v^2=(xR_0^delta)/(mr^(1+delta))`...(i)
(i)As mvr=nħ`implies`r=`(nħ)/(mv)`
Using eqn (i) r=`(nħ)/m[m/(xR_0^delta)]^(1//2) r((1+delta))/2`
or `r^((1+delta)//2)=((n^2ħ^2)/(mxR_0^delta))^(1//2) therefore r=((n^2ħ^2)/(mxR_0^delta))^(1//(1-delta))`
For n=1, `r_1=(ħ^2/(mxR_0^delta))^(1//(1-delta))`
`=[(1.05xx10^(-34))^2/((9.1xx10^(-31))(2.3xx10^(-23))(10^19)]]^(1/2.9)`
`=8xx10^(-11) m=0.8Å`
(ii)From `v_n=(nħ)/(mr_n)=nħ((xR_0^delta)/(n^2ħ))^(1/(1-delta))`
for n=1,`v_1=ħ/(mr_1)=1.44xx10^6 m s^(-1)`
(iii) K.E. =`1/2mv_1^2=9.43xx10^(-19) J =5.9 eV`
(iv)P.E. of electron from `oo` to `R_0` ,`U_1=1/(4piepsilon_0)((q_1q_2)/R_0)=(-x)/R_0`
P.E. of electron from `R_0` to r, `U_2=-int_(R_0)^(r)Fdr`
`=xR_0^deltaint_(R_0)^r (dr)/(2+delta)=(xR_0^delta)/(r^(1+delta))|1/r^(1+delta)|_(R_0)^(r)=(-x)/((1+delta))[R_0^delta/r^(1+delta)-1/R_0]`
Total P.E. of electron P.E. =`-x/(1+delta)[R_0^delta/r^(1+delta)-1/R_0+(1+delta)/R_0]`
`=(-2.3xx10^(-28))/0.9[R_0^delta/r^(1+delta)-delta/R_0]=(-2.3xx10^(-28))/0.9[R_0^(-19)/r^(-0.9)-1.9/R_0]`
`=(-2.3xx10^(-28))/(-0.9)[(0.8)^(0.9)/(10^(-10xx(-1.9))-1.9/10^(-10)]`
`=(2.3xx10^(-28))/(0.9xx10^(-10))[(0.8)^(0.9)-1.9]=-17.3 eV`
Total energy `E=KE+PE=5.9-17.3 eV=-11.4 eV`.
Promotional Banner

Topper's Solved these Questions

  • ATOMS

    NCERT FINGERTIPS|Exercise NCERT Exemplar|7 Videos
  • ATOMS

    NCERT FINGERTIPS|Exercise Assertion And Reason|15 Videos
  • ATOMS

    NCERT FINGERTIPS|Exercise De Broglie Explanation Of Bohr Model|3 Videos
  • ALTERNATING CURRENT

    NCERT FINGERTIPS|Exercise Assertion And Reason|15 Videos
  • COMMUNITCATION SYSTEMS

    NCERT FINGERTIPS|Exercise HOTS|10 Videos

Similar Questions

Explore conceptually related problems

41.Self energy of conducting sphere of radius r carrying charge is (1) (Q^(2))/(8 pi epsilon_(0)(r) (2) (Q^(2))/(4 pi epsilon_(0)(r) (3) (Q^(2))/(6 pi epsilon_(0)(r) (4) (Q^(2))/(2 pi epsilon_(0)(r)

If Coulomb's law involved 1/r^3 (instead of 1/r^2) , would Gauss's law still be true?

The electrostatic force between two point charges q_(1) and q_(2) at separation r is given by F= k. (q_(1)q_(2))/(r^(2)) . The constant k

The vector form of Coulomb's law is (A) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(|vec r|^(3))vec r (B) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(r^(3)) (C) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(r^(2))vec r (D) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(r)vec r

The vector form of Coulomb's law is (A) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(|vec r|^(3))vec r (B) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(|vec r|^(3)) (C) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(r^(2))vec r (D) vec F=(1)/(4 pi epsilon_(0))*(q_(1)q_(2))/(r)vec r

Evaluate int_(r_(1))^(r_(2))(r- eta (q_(0)q)/(r^(2)))dr

A charge q_(1) is placed at the centre of a spherical conducting shell of radius "R" .Conducting shell has a total charge q_(2) .Electrostatic potential energy of the system is (A) (q_(1)^(2)+2q_(1)q_(2))/(8 pi varepsilon_(0)R) (B) (q_(2)^(2)+2q_(1)q_(2))/(8 pi varepsilon_(0)R) (C) (q_(1)^(2)+q_(1)q_(2))/(8 pi varepsilon_(0)R) (D) (q_(2)^(2)+q_(1)q_(2))/(8 pi varepsilon_(0)R)

A spherical symmetric charge system is centered at origin. Given, Electric potential V=(Q)/(4piepsilon_0R_0)(rleR_0) , V=(Q)/(4piepsilon_0r)(rgtR_0)

Write an expression for potential at a point P vec(( r)) due to two point charges q_(1) and q_(2) at vec(r_(1)) and vec(r_(2)) respectivley.