Home
Class 12
MATHS
Consider a matrix A=[a(ij)[(3xx3) where,...

Consider a matrix `A=[a_(ij)[_(3xx3)` where, `a_(ij)={{:(i+2j,ij="even"),(2i-3j,ij="odd"):}`. If `b_(ij)` is the cafactor of `a_(ij)` in matrix A and `C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr)`, then `[C_(ij)]_(3xx3)` is

A

`[(1,0,0),(0,1,0),(0,0,1)]`

B

`[(-1,5,-7),(4,6,8),(3,9,-3)]`

C

`[(88,0,0),(0,88,0),(0,0,88)]`

D

`[(2,3,1),(1,6,2),(-1,5,2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to construct the matrix \( A \) based on the given conditions, find its determinant, and then compute the matrix \( C \) using the cofactors of \( A \). ### Step 1: Construct the matrix \( A \) The matrix \( A \) is defined as follows: - \( a_{ij} = i + 2j \) when \( ij \) is even. - \( a_{ij} = 2i - 3j \) when \( ij \) is odd. We will construct the \( 3 \times 3 \) matrix \( A \): \[ \begin{align*} a_{11} & = 1 + 2 \cdot 1 = 3 \quad (1 \cdot 1 \text{ is even}) \\ a_{12} & = 1 + 2 \cdot 2 = 5 \quad (1 \cdot 2 \text{ is even}) \\ a_{13} & = 1 + 2 \cdot 3 = 7 \quad (1 \cdot 3 \text{ is odd}) \\ a_{21} & = 2 + 2 \cdot 1 = 4 \quad (2 \cdot 1 \text{ is even}) \\ a_{22} & = 2 + 2 \cdot 2 = 6 \quad (2 \cdot 2 \text{ is even}) \\ a_{23} & = 2 - 3 \cdot 3 = -7 \quad (2 \cdot 3 \text{ is odd}) \\ a_{31} & = 3 + 2 \cdot 1 = 5 \quad (3 \cdot 1 \text{ is odd}) \\ a_{32} & = 3 - 3 \cdot 2 = -3 \quad (3 \cdot 2 \text{ is even}) \\ a_{33} & = 3 + 2 \cdot 3 = 9 \quad (3 \cdot 3 \text{ is odd}) \\ \end{align*} \] Thus, the matrix \( A \) is: \[ A = \begin{bmatrix} 3 & 5 & 7 \\ 4 & 6 & -7 \\ 5 & -3 & 9 \end{bmatrix} \] ### Step 2: Calculate the determinant of \( A \) To find the determinant of the matrix \( A \), we can use the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] Calculating each term: 1. \( a_{22}a_{33} - a_{23}a_{32} = 6 \cdot 9 - (-7)(-3) = 54 - 21 = 33 \) 2. \( a_{21}a_{33} - a_{23}a_{31} = 4 \cdot 9 - (-7)(5) = 36 + 35 = 71 \) 3. \( a_{21}a_{32} - a_{22}a_{31} = 4 \cdot (-3) - 6 \cdot 5 = -12 - 30 = -42 \) Now substituting back into the determinant formula: \[ \text{det}(A) = 3 \cdot 33 - 5 \cdot 71 + 7 \cdot (-42) \] \[ = 99 - 355 - 294 = 99 - 649 = -550 \] ### Step 3: Calculate the matrix \( C \) The matrix \( C \) is defined as: \[ C_{ij} = \sum_{r=1}^{3} a_{ir} b_{jr} \] Where \( b_{ij} \) is the cofactor of \( a_{ij} \). Since \( C_{ij} \) is constructed using the cofactors, we can note that \( C \) will have a specific structure based on the determinant of \( A \). From the properties of determinants and cofactors, we know that: \[ C_{ij} = \text{det}(A) \cdot \delta_{ij} \] Where \( \delta_{ij} \) is the Kronecker delta (1 if \( i = j \) and 0 otherwise). Thus, we have: \[ C = \begin{bmatrix} \text{det}(A) & 0 & 0 \\ 0 & \text{det}(A) & 0 \\ 0 & 0 & \text{det}(A) \end{bmatrix} = \begin{bmatrix} -550 & 0 & 0 \\ 0 & -550 & 0 \\ 0 & 0 & -550 \end{bmatrix} \] ### Final Answer The matrix \( C \) is: \[ C = \begin{bmatrix} -550 & 0 & 0 \\ 0 & -550 & 0 \\ 0 & 0 & -550 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 73

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 75

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Consider a matrix A=[a_(ij)]_(3xx3) , where a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):} if b_(ij) is cofactor of a_(ij) in matrix A and c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr) , then value of root3(det[c_(ij)]_(3xx3)) is

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

If A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i.j

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

NTA MOCK TESTS-NTA JEE MOCK TEST 74-MATHEMATICS
  1. An equilateral triangle is inscribed in the ellipse whose equation is ...

    Text Solution

    |

  2. The value of Sigma(k=1)^(99)(i^(k!)+omega^(k!)) is (where, i=sqrt(-1)...

    Text Solution

    |

  3. If the fucntion f(x)={{:(asqrt(x+7),,,0lexlt2),(bx+5,,,x ge2):} is di...

    Text Solution

    |

  4. Consider a matrix A=[a(ij)[(3xx3) where, a(ij)={{:(i+2j,ij="even"),(2i...

    Text Solution

    |

  5. Consider a function f(x)=x^(x), AA x in [1, oo). If g(x) is the invers...

    Text Solution

    |

  6. The standard deviation of a distribution is 30. If each observation is...

    Text Solution

    |

  7. The range of the function f(x)=2sqrt(3x^(2)-4x+5) is

    Text Solution

    |

  8. If A, B, C are three events such that P(B)=(4)/(5), P(A nn B nn C^(c )...

    Text Solution

    |

  9. If the line (x-1)/(5)=(y-3)/(2)=(z-3)/(2) intersects the curve x^(2)-y...

    Text Solution

    |

  10. Let A=[(1,0,3),(0,b,5),(-(1)/(3),0,c)], where a, b, c are positive int...

    Text Solution

    |

  11. The value of lim(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is e...

    Text Solution

    |

  12. Coefficient of t^(24) in (1+t^(2))^(12)(1+t^(12))(1+t^(24)) is :

    Text Solution

    |

  13. If 1 in (alpha, beta) where alpha, beta are the roots of the equation ...

    Text Solution

    |

  14. Let the function f(x)=|x+1|. The number of values of x in [-2,2] for w...

    Text Solution

    |

  15. If sinx+cosy=(1)/(3) and cos x+siny=(3)/(4), then the value of tan((x-...

    Text Solution

    |

  16. If the integral I=∫(-(sinx)/(x)-ln x cosx)dx=f(x)+C (where, C is the c...

    Text Solution

    |

  17. If M and m are the maximum and minimum values of (y)/(x) for pair of r...

    Text Solution

    |

  18. If the maximum value of x which satisfies the inequality sin^(-1)(sinx...

    Text Solution

    |

  19. If vec(a(1)),vec(a(2)),vec(a(3)) and vec(b(1)), vec(b(2)),vec(b(3)) be...

    Text Solution

    |

  20. The number of different ways in which the first twelve natural numbers...

    Text Solution

    |