Home
Class 12
MATHS
The value of lim(xrarr(pi)/(6))(2cos(x+(...

The value of `lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx))` is equal to

A

`(1)/(2)`

B

`sqrt3`

C

`(sqrt3)/(4)`

D

`(sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \frac{\pi}{6}} \frac{2 \cos\left(x + \frac{\pi}{3}\right)}{1 - \sqrt{3} \tan x} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{6} \) First, we substitute \( x = \frac{\pi}{6} \) into the limit expression to check if we get an indeterminate form. \[ \cos\left(\frac{\pi}{6} + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{6} + \frac{2\pi}{6}\right) = \cos\left(\frac{3\pi}{6}\right) = \cos\left(\frac{\pi}{2}\right) = 0 \] Now for the denominator: \[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \implies 1 - \sqrt{3} \tan\left(\frac{\pi}{6}\right) = 1 - \sqrt{3} \cdot \frac{1}{\sqrt{3}} = 1 - 1 = 0 \] Thus, we have the form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator. **Numerator:** \[ \frac{d}{dx}\left(2 \cos\left(x + \frac{\pi}{3}\right)\right) = 2 \cdot -\sin\left(x + \frac{\pi}{3}\right) \cdot \frac{d}{dx}\left(x + \frac{\pi}{3}\right) = -2 \sin\left(x + \frac{\pi}{3}\right) \] **Denominator:** \[ \frac{d}{dx}\left(1 - \sqrt{3} \tan x\right) = -\sqrt{3} \sec^2 x \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives we found: \[ \lim_{x \to \frac{\pi}{6}} \frac{-2 \sin\left(x + \frac{\pi}{3}\right)}{-\sqrt{3} \sec^2 x} = \lim_{x \to \frac{\pi}{6}} \frac{2 \sin\left(x + \frac{\pi}{3}\right)}{\sqrt{3} \sec^2 x} \] ### Step 4: Substitute \( x = \frac{\pi}{6} \) again Now we substitute \( x = \frac{\pi}{6} \) again: \[ \sin\left(\frac{\pi}{6} + \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{6} + \frac{2\pi}{6}\right) = \sin\left(\frac{3\pi}{6}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] For \( \sec^2\left(\frac{\pi}{6}\right) \): \[ \sec\left(\frac{\pi}{6}\right) = \frac{1}{\cos\left(\frac{\pi}{6}\right)} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \implies \sec^2\left(\frac{\pi}{6}\right) = \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3} \] ### Step 5: Calculate the limit Now substituting these values into our limit expression: \[ \lim_{x \to \frac{\pi}{6}} \frac{2 \cdot 1}{\sqrt{3} \cdot \frac{4}{3}} = \frac{2}{\sqrt{3} \cdot \frac{4}{3}} = \frac{2 \cdot 3}{4 \sqrt{3}} = \frac{6}{4 \sqrt{3}} = \frac{3}{2 \sqrt{3}} = \frac{3 \sqrt{3}}{6} = \frac{\sqrt{3}}{2} \] ### Final Answer Thus, the value of the limit is: \[ \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 73

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 75

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the value of lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to lambda , then the value of 120lambda^(2) is equal to

Evaluate lim_(xrarr(pi)/(2))(cosx)/(((pi)/(2)-x)).

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

The value of lim_(xrarr-pi)(|x+pi|)/(sinx)

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is equal to

The value of lim_(xrarr(pi)/(3))(2-sqrt3sinx-cosx)/((3x-pi)^(2)) is equal to the reciprocal of the number

The value of lim_(x rarr(pi)/(3))(tan^(3)x-3tan x)/(cos(x+(pi)/(6)))is:

NTA MOCK TESTS-NTA JEE MOCK TEST 74-MATHEMATICS
  1. An equilateral triangle is inscribed in the ellipse whose equation is ...

    Text Solution

    |

  2. The value of Sigma(k=1)^(99)(i^(k!)+omega^(k!)) is (where, i=sqrt(-1)...

    Text Solution

    |

  3. If the fucntion f(x)={{:(asqrt(x+7),,,0lexlt2),(bx+5,,,x ge2):} is di...

    Text Solution

    |

  4. Consider a matrix A=[a(ij)[(3xx3) where, a(ij)={{:(i+2j,ij="even"),(2i...

    Text Solution

    |

  5. Consider a function f(x)=x^(x), AA x in [1, oo). If g(x) is the invers...

    Text Solution

    |

  6. The standard deviation of a distribution is 30. If each observation is...

    Text Solution

    |

  7. The range of the function f(x)=2sqrt(3x^(2)-4x+5) is

    Text Solution

    |

  8. If A, B, C are three events such that P(B)=(4)/(5), P(A nn B nn C^(c )...

    Text Solution

    |

  9. If the line (x-1)/(5)=(y-3)/(2)=(z-3)/(2) intersects the curve x^(2)-y...

    Text Solution

    |

  10. Let A=[(1,0,3),(0,b,5),(-(1)/(3),0,c)], where a, b, c are positive int...

    Text Solution

    |

  11. The value of lim(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is e...

    Text Solution

    |

  12. Coefficient of t^(24) in (1+t^(2))^(12)(1+t^(12))(1+t^(24)) is :

    Text Solution

    |

  13. If 1 in (alpha, beta) where alpha, beta are the roots of the equation ...

    Text Solution

    |

  14. Let the function f(x)=|x+1|. The number of values of x in [-2,2] for w...

    Text Solution

    |

  15. If sinx+cosy=(1)/(3) and cos x+siny=(3)/(4), then the value of tan((x-...

    Text Solution

    |

  16. If the integral I=∫(-(sinx)/(x)-ln x cosx)dx=f(x)+C (where, C is the c...

    Text Solution

    |

  17. If M and m are the maximum and minimum values of (y)/(x) for pair of r...

    Text Solution

    |

  18. If the maximum value of x which satisfies the inequality sin^(-1)(sinx...

    Text Solution

    |

  19. If vec(a(1)),vec(a(2)),vec(a(3)) and vec(b(1)), vec(b(2)),vec(b(3)) be...

    Text Solution

    |

  20. The number of different ways in which the first twelve natural numbers...

    Text Solution

    |