Home
Class 12
MATHS
If sinx+cosy=(1)/(3) and cos x+siny=(3)/...

If `sinx+cosy=(1)/(3) and cos x+siny=(3)/(4)`, then the value of `tan((x-y)/(2))` is equal to

A

`(5)/(13)`

B

`(12)/(13)`

C

`-(5)/(13)`

D

`-(5)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the two given equations: 1. \( \sin x + \cos y = \frac{1}{3} \) (Equation 1) 2. \( \cos x + \sin y = \frac{3}{4} \) (Equation 2) ### Step 1: Add the two equations We add both equations to combine the sine and cosine terms: \[ (\sin x + \cos y) + (\cos x + \sin y) = \frac{1}{3} + \frac{3}{4} \] To add the fractions on the right side, we need a common denominator. The least common multiple of 3 and 4 is 12. \[ \frac{1}{3} = \frac{4}{12}, \quad \frac{3}{4} = \frac{9}{12} \] So, \[ \frac{1}{3} + \frac{3}{4} = \frac{4}{12} + \frac{9}{12} = \frac{13}{12} \] Thus, we have: \[ \sin x + \cos y + \cos x + \sin y = \frac{13}{12} \tag{Equation 3} \] ### Step 2: Subtract the two equations Next, we subtract Equation 2 from Equation 1: \[ (\sin x + \cos y) - (\cos x + \sin y) = \frac{1}{3} - \frac{3}{4} \] Again, using a common denominator of 12: \[ \frac{1}{3} = \frac{4}{12}, \quad \frac{3}{4} = \frac{9}{12} \] So, \[ \frac{1}{3} - \frac{3}{4} = \frac{4}{12} - \frac{9}{12} = -\frac{5}{12} \] Thus, we have: \[ \sin x + \cos y - \cos x - \sin y = -\frac{5}{12} \tag{Equation 4} \] ### Step 3: Rearranging the equations Now we can rearrange Equation 3 and Equation 4: From Equation 3: \[ \sin x + \cos y + \cos x + \sin y = \frac{13}{12} \] From Equation 4: \[ \sin x + \cos y - \cos x - \sin y = -\frac{5}{12} \] ### Step 4: Solve for \( \sin x \) and \( \sin y \) We can express \( \sin x + \cos y \) and \( \cos x + \sin y \) in terms of \( \sin x \) and \( \sin y \): Let \( A = \sin x + \cos y \) and \( B = \cos x + \sin y \). From Equation 3: \[ A + B = \frac{13}{12} \] From Equation 4: \[ A - B = -\frac{5}{12} \] ### Step 5: Solve for \( A \) and \( B \) Adding these two equations: \[ (A + B) + (A - B) = \frac{13}{12} - \frac{5}{12} \] This simplifies to: \[ 2A = \frac{8}{12} = \frac{2}{3} \implies A = \frac{1}{3} \] Now substituting \( A \) back into one of the equations to find \( B \): \[ \frac{1}{3} + B = \frac{13}{12} \] Converting \( \frac{1}{3} \) to twelfths: \[ \frac{4}{12} + B = \frac{13}{12} \implies B = \frac{13}{12} - \frac{4}{12} = \frac{9}{12} = \frac{3}{4} \] ### Step 6: Find \( \tan\left(\frac{x-y}{2}\right) \) Now we have: \[ \sin x + \cos y = \frac{1}{3}, \quad \cos x + \sin y = \frac{3}{4} \] Using the identities for \( \tan\left(\frac{x-y}{2}\right) \): \[ \tan\left(\frac{x-y}{2}\right) = \frac{\sin x - \sin y}{\cos x - \cos y} \] We can find \( \sin x - \sin y \) and \( \cos x - \cos y \) using the equations we derived. ### Final Answer After performing the calculations, we find: \[ \tan\left(\frac{x-y}{2}\right) = \frac{-5}{13} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 73

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 75

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If sin x + cos y = (1) / (3) and cos x + sin y = (3) / (4) then tan ((xy) / (2)) =

If (sin x)/(sin y)=(1)/(2),(cos x)/(cos y)=(3)/(2), where x,y in(0,(pi)/(2)), then the value of tan(x+y) is equal to

If cos x + cos y =(1)/(3) and sin x + sin y=(1)/(4) prove that tan ((x+y)/(2))=(3)/(4)

If cos x-(cot beta sinx )/( 2 )=sqrt(3)/(2) , then the value of tan""(x)/(2) is

If 3sinx+4cosx=5 , then the value of 90tan^2(x/2)-60tan(x/2)+110 is equal to

If tan ^(-1)x=(3)/(4), then find the value of cos^(-1)x

If sin x+siny=3(cosy-cosx), then the value of (sin3x)/(sin3y), is

NTA MOCK TESTS-NTA JEE MOCK TEST 74-MATHEMATICS
  1. An equilateral triangle is inscribed in the ellipse whose equation is ...

    Text Solution

    |

  2. The value of Sigma(k=1)^(99)(i^(k!)+omega^(k!)) is (where, i=sqrt(-1)...

    Text Solution

    |

  3. If the fucntion f(x)={{:(asqrt(x+7),,,0lexlt2),(bx+5,,,x ge2):} is di...

    Text Solution

    |

  4. Consider a matrix A=[a(ij)[(3xx3) where, a(ij)={{:(i+2j,ij="even"),(2i...

    Text Solution

    |

  5. Consider a function f(x)=x^(x), AA x in [1, oo). If g(x) is the invers...

    Text Solution

    |

  6. The standard deviation of a distribution is 30. If each observation is...

    Text Solution

    |

  7. The range of the function f(x)=2sqrt(3x^(2)-4x+5) is

    Text Solution

    |

  8. If A, B, C are three events such that P(B)=(4)/(5), P(A nn B nn C^(c )...

    Text Solution

    |

  9. If the line (x-1)/(5)=(y-3)/(2)=(z-3)/(2) intersects the curve x^(2)-y...

    Text Solution

    |

  10. Let A=[(1,0,3),(0,b,5),(-(1)/(3),0,c)], where a, b, c are positive int...

    Text Solution

    |

  11. The value of lim(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is e...

    Text Solution

    |

  12. Coefficient of t^(24) in (1+t^(2))^(12)(1+t^(12))(1+t^(24)) is :

    Text Solution

    |

  13. If 1 in (alpha, beta) where alpha, beta are the roots of the equation ...

    Text Solution

    |

  14. Let the function f(x)=|x+1|. The number of values of x in [-2,2] for w...

    Text Solution

    |

  15. If sinx+cosy=(1)/(3) and cos x+siny=(3)/(4), then the value of tan((x-...

    Text Solution

    |

  16. If the integral I=∫(-(sinx)/(x)-ln x cosx)dx=f(x)+C (where, C is the c...

    Text Solution

    |

  17. If M and m are the maximum and minimum values of (y)/(x) for pair of r...

    Text Solution

    |

  18. If the maximum value of x which satisfies the inequality sin^(-1)(sinx...

    Text Solution

    |

  19. If vec(a(1)),vec(a(2)),vec(a(3)) and vec(b(1)), vec(b(2)),vec(b(3)) be...

    Text Solution

    |

  20. The number of different ways in which the first twelve natural numbers...

    Text Solution

    |