Home
Class 12
MATHS
If the integral I=∫(-(sinx)/(x)-ln x cos...

If the integral `I=∫(-(sinx)/(x)-ln x cosx)dx=f(x)+C` (where, C is the constant of integration) and `f(e )=-sine`, then the number of natural numbers less than `[f((pi)/(6))]` is equal to (where `[.]` is the greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( -\frac{\sin x}{x} - \ln x \cos x \right) dx = f(x) + C \), where \( C \) is the constant of integration, and given that \( f(e) = -\sin e \), we need to find the number of natural numbers less than \( [f(\frac{\pi}{6})] \). ### Step-by-Step Solution: 1. **Separate the Integral**: We can express the integral as: \[ I = -\int \frac{\sin x}{x} \, dx - \int \ln x \cos x \, dx \] 2. **Integration by Parts**: For the second integral \( \int \ln x \cos x \, dx \), we will use integration by parts. Let: - \( u = \ln x \) ⇒ \( du = \frac{1}{x} \, dx \) - \( dv = \cos x \, dx \) ⇒ \( v = \sin x \) Applying integration by parts: \[ \int \ln x \cos x \, dx = u v - \int v \, du = \ln x \sin x - \int \sin x \cdot \frac{1}{x} \, dx \] 3. **Combine the Integrals**: Substitute back into the expression for \( I \): \[ I = -\int \frac{\sin x}{x} \, dx - \left( \ln x \sin x - \int \frac{\sin x}{x} \, dx \right) \] Simplifying gives: \[ I = -\ln x \sin x + C \] 4. **Identify \( f(x) \)**: From the integral, we have: \[ f(x) = -\sin x \ln x \] 5. **Use the Given Condition**: We know \( f(e) = -\sin e \). Let's verify: \[ f(e) = -\sin e \ln e = -\sin e \cdot 1 = -\sin e \] This confirms our expression for \( f(x) \). 6. **Evaluate \( f\left(\frac{\pi}{6}\right) \)**: Now we need to calculate: \[ f\left(\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) \ln\left(\frac{\pi}{6}\right) \] We know \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \): \[ f\left(\frac{\pi}{6}\right) = -\frac{1}{2} \ln\left(\frac{\pi}{6}\right) \] 7. **Approximate \( \ln\left(\frac{\pi}{6}\right) \)**: Using \( \pi \approx 3.14 \): \[ \frac{\pi}{6} \approx \frac{3.14}{6} \approx 0.5233 \] Therefore, \( \ln\left(\frac{\pi}{6}\right) \) can be approximated: \[ \ln(0.5233) \approx -0.644 \] Hence, \[ f\left(\frac{\pi}{6}\right) \approx -\frac{1}{2} \cdot (-0.644) \approx 0.322 \] 8. **Find the Greatest Integer**: Now we apply the greatest integer function: \[ [f\left(\frac{\pi}{6}\right)] = [0.322] = 0 \] 9. **Count Natural Numbers Less Than 0**: The natural numbers less than 0 are none. Therefore, the answer is: \[ \text{Number of natural numbers less than } [f\left(\frac{\pi}{6}\right)] = 0 \] ### Final Answer: The number of natural numbers less than \( [f\left(\frac{\pi}{6}\right)] \) is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 73

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 75

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The integral I=int(2sinx)/((3+sin2x))dx simplifies to (where, C is the constant of integration)

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

The integral I=int((1)/(x.secx)-ln(x^(sinx)))dx simplifies to (where, c is the constant of integration)

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

The integral int((X)/(xsinx + cosx))^2dx is equal to (where C is a constant integration) :

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If the integral I=inte^(sinx)(cosx.x^(2)+2x)dx=e^(f(x))g(x)+C (where, C is the constant of integration), then the number of solution(s) of f(x)=g(x) is/are

If the integral I= ∫e^(5ln x)(x^(6)+1)^(-1)dx=ln (x^(6)+1)+C , (where C is the constant of integration) then the value of (1)/(lambda) is

NTA MOCK TESTS-NTA JEE MOCK TEST 74-MATHEMATICS
  1. An equilateral triangle is inscribed in the ellipse whose equation is ...

    Text Solution

    |

  2. The value of Sigma(k=1)^(99)(i^(k!)+omega^(k!)) is (where, i=sqrt(-1)...

    Text Solution

    |

  3. If the fucntion f(x)={{:(asqrt(x+7),,,0lexlt2),(bx+5,,,x ge2):} is di...

    Text Solution

    |

  4. Consider a matrix A=[a(ij)[(3xx3) where, a(ij)={{:(i+2j,ij="even"),(2i...

    Text Solution

    |

  5. Consider a function f(x)=x^(x), AA x in [1, oo). If g(x) is the invers...

    Text Solution

    |

  6. The standard deviation of a distribution is 30. If each observation is...

    Text Solution

    |

  7. The range of the function f(x)=2sqrt(3x^(2)-4x+5) is

    Text Solution

    |

  8. If A, B, C are three events such that P(B)=(4)/(5), P(A nn B nn C^(c )...

    Text Solution

    |

  9. If the line (x-1)/(5)=(y-3)/(2)=(z-3)/(2) intersects the curve x^(2)-y...

    Text Solution

    |

  10. Let A=[(1,0,3),(0,b,5),(-(1)/(3),0,c)], where a, b, c are positive int...

    Text Solution

    |

  11. The value of lim(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is e...

    Text Solution

    |

  12. Coefficient of t^(24) in (1+t^(2))^(12)(1+t^(12))(1+t^(24)) is :

    Text Solution

    |

  13. If 1 in (alpha, beta) where alpha, beta are the roots of the equation ...

    Text Solution

    |

  14. Let the function f(x)=|x+1|. The number of values of x in [-2,2] for w...

    Text Solution

    |

  15. If sinx+cosy=(1)/(3) and cos x+siny=(3)/(4), then the value of tan((x-...

    Text Solution

    |

  16. If the integral I=∫(-(sinx)/(x)-ln x cosx)dx=f(x)+C (where, C is the c...

    Text Solution

    |

  17. If M and m are the maximum and minimum values of (y)/(x) for pair of r...

    Text Solution

    |

  18. If the maximum value of x which satisfies the inequality sin^(-1)(sinx...

    Text Solution

    |

  19. If vec(a(1)),vec(a(2)),vec(a(3)) and vec(b(1)), vec(b(2)),vec(b(3)) be...

    Text Solution

    |

  20. The number of different ways in which the first twelve natural numbers...

    Text Solution

    |