Home
Class 12
MATHS
Let A(x)=[(0,x-2,x-3),(x+2,0,x-5),(x+3,x...

Let `A(x)=[(0,x-2,x-3),(x+2,0,x-5),(x+3,x+5,0)]`,
then the matrix `A(0)(A(0))^(T)` is a

A

null matrix

B

symmetric matrix

C

skew symmetric matrix

D

non singular matrix

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A(0) \) and then compute the product \( A(0) \cdot (A(0))^T \). Let's go through the steps systematically. ### Step 1: Evaluate \( A(0) \) Given the matrix \( A(x) \): \[ A(x) = \begin{pmatrix} 0 & x-2 & x-3 \\ x+2 & 0 & x-5 \\ x+3 & x+5 & 0 \end{pmatrix} \] Substituting \( x = 0 \): \[ A(0) = \begin{pmatrix} 0 & 0-2 & 0-3 \\ 0+2 & 0 & 0-5 \\ 0+3 & 0+5 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 & -3 \\ 2 & 0 & -5 \\ 3 & 5 & 0 \end{pmatrix} \] ### Step 2: Compute \( (A(0))^T \) Now we need to find the transpose of \( A(0) \): \[ (A(0))^T = \begin{pmatrix} 0 & 2 & 3 \\ -2 & 0 & 5 \\ -3 & -5 & 0 \end{pmatrix} \] ### Step 3: Compute \( A(0) \cdot (A(0))^T \) Now, we will calculate the product \( A(0) \cdot (A(0))^T \): \[ A(0) \cdot (A(0))^T = \begin{pmatrix} 0 & -2 & -3 \\ 2 & 0 & -5 \\ 3 & 5 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 2 & 3 \\ -2 & 0 & 5 \\ -3 & -5 & 0 \end{pmatrix} \] Calculating each element of the resulting matrix: - **Element (1,1)**: \[ 0 \cdot 0 + (-2) \cdot (-2) + (-3) \cdot (-3) = 0 + 4 + 9 = 13 \] - **Element (1,2)**: \[ 0 \cdot 2 + (-2) \cdot 0 + (-3) \cdot 5 = 0 + 0 - 15 = -15 \] - **Element (1,3)**: \[ 0 \cdot 3 + (-2) \cdot 5 + (-3) \cdot 0 = 0 - 10 + 0 = -10 \] - **Element (2,1)**: \[ 2 \cdot 0 + 0 \cdot (-2) + (-5) \cdot (-3) = 0 + 0 + 15 = 15 \] - **Element (2,2)**: \[ 2 \cdot 2 + 0 \cdot 0 + (-5) \cdot 5 = 4 + 0 - 25 = -21 \] - **Element (2,3)**: \[ 2 \cdot 3 + 0 \cdot 5 + (-5) \cdot 0 = 6 + 0 + 0 = 6 \] - **Element (3,1)**: \[ 3 \cdot 0 + 5 \cdot (-2) + 0 \cdot (-3) = 0 - 10 + 0 = -10 \] - **Element (3,2)**: \[ 3 \cdot 2 + 5 \cdot 0 + 0 \cdot 5 = 6 + 0 + 0 = 6 \] - **Element (3,3)**: \[ 3 \cdot 3 + 5 \cdot 5 + 0 \cdot 0 = 9 + 25 + 0 = 34 \] Putting it all together, we get: \[ A(0) \cdot (A(0))^T = \begin{pmatrix} 13 & -15 & -10 \\ 15 & -21 & 6 \\ -10 & 6 & 34 \end{pmatrix} \] ### Final Result Thus, the matrix \( A(0) \cdot (A(0))^T \) is: \[ \begin{pmatrix} 13 & -15 & -10 \\ 15 & -21 & 6 \\ -10 & 6 & 34 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 76

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 78

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let matrix M(x) = [(0, (x-a), (x-b)), ((x+a),0,(x-c)),((x+b),(x+c),0)] , then the matrix (M(0)) (M(0))^T (a, b, c !=0) , is (A) null matrix (B) skew-symmetric matrix (C) orthogonal matrix (D) symmetric matrix

If X+Y=[(7,0),(2,5)] and X-Y=[(3,0),(0,3)] , then the matrix X is :

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

If |{:(x, 2, 3),(2,3,x),(3 , x,2):}| = |{:(1, x, 4),(x,4,1),(4 , 1,x):}| = |{:(0, 5, x),(5,x,0),(x, 0,5):}| = 0, then the value x equals (x in R )

If f(x)=(x^(3)+3x+5)/(x^(3)-3x+2) in [0, 5], then f is

For what value of 'x', is the matrix , A=[(0,1,-2),(-1,0,3),(x,-3,0)] a skew - symmetric matrix

The value of 'x', when the matrix : A=[(0,1,-2),(-1,0,3),(x,-3,0)] is a skew - symmetric matrix is _____________.

2x^(2)-3x+5=0

Let A = [{:(x + 2, 3x),(3,x + 2):}], B = [{:(x , 0),(5 , x + 2):}] . Then all solutions of the equation det (AB ) = 0 is

NTA MOCK TESTS-NTA JEE MOCK TEST 77-MATHEMATICS
  1. If S=sum(n=1)^(9999)(1)/((sqrtn+sqrt(n+1))(root4(n)+root4(n+1))), then...

    Text Solution

    |

  2. Find the number of solution of the equation cot^(2) (sin x+3)=1 in [0,...

    Text Solution

    |

  3. A special fair cubic die is rolled which has one blue side, two red si...

    Text Solution

    |

  4. If the angles between the vectors veca and vecb, vecb and vecc, vecc a...

    Text Solution

    |

  5. The x - intercept of the common tangent to the parabolas y^(2)=32x and...

    Text Solution

    |

  6. Let A(x)=[(0,x-2,x-3),(x+2,0,x-5),(x+3,x+5,0)], then the matrix A(0)...

    Text Solution

    |

  7. Let R = {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on the ...

    Text Solution

    |

  8. The domain of definiton of the function f(x)=(1)/(sqrt(x^(12)-x^(9)+x^...

    Text Solution

    |

  9. If f(x)={{:(x^(2),:,"when x is rational"),(2-x,:,"when x is irrational...

    Text Solution

    |

  10. The median of a set of 9 distinct observations is 20.5. If each of the...

    Text Solution

    |

  11. The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1...

    Text Solution

    |

  12. Which of the following functions satisfies all contains of the Rolle's...

    Text Solution

    |

  13. Consider the definite integrals A=int(0)^(pi)sinx cosx^(2)xdx and B=in...

    Text Solution

    |

  14. If the circle whose diameter is the major axis of the ellipse (x^(2))/...

    Text Solution

    |

  15. The equation of the curve satisfying the differential equation xe^(x)s...

    Text Solution

    |

  16. Let sqrta+sqrtd=sqrtc+sqrtb and ad=bc, where a, b, c, in R^(+). If the...

    Text Solution

    |

  17. If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+…a(16)x^(16) for all values of...

    Text Solution

    |

  18. The value of lim(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

    Text Solution

    |

  19. The integral I=int(e^(sqrtx)cos(e^(sqrtx)))/(sqrtx)dx=f(x)+c (where, c...

    Text Solution

    |

  20. Let A=[(1,3cos 2theta,1),(sin2theta, 1, 3 cos 2 theta),(1, sin 2 theta...

    Text Solution

    |