Home
Class 12
MATHS
The range of the function y=2sin^(-1)[x^...

The range of the function `y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)]` is (where, `[.]` denotes the greatest integer function)

A

`(0, pi)`

B

`[pi, (3pi)/(2)]`

C

`{pi}`

D

`{pi, (3pi)/(2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( y = 2 \sin^{-1} \left( \lfloor x^2 + \frac{1}{2} \rfloor \right) + \cos^{-1} \left( \lfloor x^2 - \frac{1}{2} \rfloor \right) \), we will analyze the components of the function step by step. ### Step 1: Analyze the components of the function 1. **Identify the input for the greatest integer function (GIF)**: - The term \( \lfloor x^2 + \frac{1}{2} \rfloor \) can take integer values based on the value of \( x^2 \). - The term \( \lfloor x^2 - \frac{1}{2} \rfloor \) also takes integer values. ### Step 2: Determine the possible values of \( x^2 \) - Since \( x^2 \) is always non-negative, we can analyze the range of \( x^2 \): - \( x^2 \geq 0 \) ### Step 3: Calculate the values of \( \lfloor x^2 + \frac{1}{2} \rfloor \) - For \( x^2 \) in the range \( [0, 1) \): - \( \lfloor x^2 + \frac{1}{2} \rfloor = \lfloor 0 + \frac{1}{2} \rfloor = 0 \) - For \( x^2 \) in the range \( [1, 2) \): - \( \lfloor x^2 + \frac{1}{2} \rfloor = \lfloor 1 + \frac{1}{2} \rfloor = 1 \) - For \( x^2 \) in the range \( [2, 3) \): - \( \lfloor x^2 + \frac{1}{2} \rfloor = \lfloor 2 + \frac{1}{2} \rfloor = 2 \) ### Step 4: Calculate the values of \( \lfloor x^2 - \frac{1}{2} \rfloor \) - For \( x^2 \) in the range \( [0, 1) \): - \( \lfloor x^2 - \frac{1}{2} \rfloor = \lfloor 0 - \frac{1}{2} \rfloor = -1 \) - For \( x^2 \) in the range \( [1, 2) \): - \( \lfloor x^2 - \frac{1}{2} \rfloor = \lfloor 1 - \frac{1}{2} \rfloor = 0 \) - For \( x^2 \) in the range \( [2, 3) \): - \( \lfloor x^2 - \frac{1}{2} \rfloor = \lfloor 2 - \frac{1}{2} \rfloor = 1 \) ### Step 5: Evaluate the function for the possible values 1. **When \( \lfloor x^2 + \frac{1}{2} \rfloor = 0 \) and \( \lfloor x^2 - \frac{1}{2} \rfloor = -1 \)**: \[ y = 2 \sin^{-1}(0) + \cos^{-1}(-1) = 0 + \pi = \pi \] 2. **When \( \lfloor x^2 + \frac{1}{2} \rfloor = 1 \) and \( \lfloor x^2 - \frac{1}{2} \rfloor = 0 \)**: \[ y = 2 \sin^{-1}(1) + \cos^{-1}(0) = 2 \cdot \frac{\pi}{2} + \frac{\pi}{2} = \pi + \frac{\pi}{2} = \frac{3\pi}{2} \] 3. **When \( \lfloor x^2 + \frac{1}{2} \rfloor = 2 \) and \( \lfloor x^2 - \frac{1}{2} \rfloor = 1 \)**: \[ y = 2 \sin^{-1}(2) + \cos^{-1}(1) \] - Note: \( \sin^{-1}(2) \) is undefined; hence this case does not contribute to the range. ### Step 6: Conclusion on the range The only valid outputs from the function are \( \pi \) and \( \frac{3\pi}{2} \). Therefore, the range of the function is: \[ \{ \pi, \frac{3\pi}{2} \} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 76

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 78

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

f(x)=sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] where [.1 denotes the greatest integer function.

The range of the function f(x)=sin^(-1)[x^(2)-(1)/(3)]-cos^(-1)[x^(2)+(2)/()] is (where, [x] represents the greatest integer value of x)

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/9]+cos^(-1) [x^(2)-4/9] where where [.] denotes the greatest integer function is:

The range of sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)], where [.] denotes the greatest integer function,is {(pi)/(2),pi}(b){pi}(c){(pi)/(2)}(d) none of these

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The value of int_(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int_(-1)^(1) cos^(-1)[x^(2)-(1)/(2)]dx , where [.] denotes the greatest integer function , is

Evaluate: int_(-5)^(5)x^(2)[x+(1)/(2)]dx (where [.] denotes the greatest integer function).

Domain of cos^(-1)[2x^(2)-3] where [ ] denotes greatest integer function, is

int _(0)^(2) x ^(3) [1+ cos ""(pix)/(2)] dx is (where [**] denotes the greatest integer function)

NTA MOCK TESTS-NTA JEE MOCK TEST 77-MATHEMATICS
  1. If S=sum(n=1)^(9999)(1)/((sqrtn+sqrt(n+1))(root4(n)+root4(n+1))), then...

    Text Solution

    |

  2. Find the number of solution of the equation cot^(2) (sin x+3)=1 in [0,...

    Text Solution

    |

  3. A special fair cubic die is rolled which has one blue side, two red si...

    Text Solution

    |

  4. If the angles between the vectors veca and vecb, vecb and vecc, vecc a...

    Text Solution

    |

  5. The x - intercept of the common tangent to the parabolas y^(2)=32x and...

    Text Solution

    |

  6. Let A(x)=[(0,x-2,x-3),(x+2,0,x-5),(x+3,x+5,0)], then the matrix A(0)...

    Text Solution

    |

  7. Let R = {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on the ...

    Text Solution

    |

  8. The domain of definiton of the function f(x)=(1)/(sqrt(x^(12)-x^(9)+x^...

    Text Solution

    |

  9. If f(x)={{:(x^(2),:,"when x is rational"),(2-x,:,"when x is irrational...

    Text Solution

    |

  10. The median of a set of 9 distinct observations is 20.5. If each of the...

    Text Solution

    |

  11. The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1...

    Text Solution

    |

  12. Which of the following functions satisfies all contains of the Rolle's...

    Text Solution

    |

  13. Consider the definite integrals A=int(0)^(pi)sinx cosx^(2)xdx and B=in...

    Text Solution

    |

  14. If the circle whose diameter is the major axis of the ellipse (x^(2))/...

    Text Solution

    |

  15. The equation of the curve satisfying the differential equation xe^(x)s...

    Text Solution

    |

  16. Let sqrta+sqrtd=sqrtc+sqrtb and ad=bc, where a, b, c, in R^(+). If the...

    Text Solution

    |

  17. If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+…a(16)x^(16) for all values of...

    Text Solution

    |

  18. The value of lim(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

    Text Solution

    |

  19. The integral I=int(e^(sqrtx)cos(e^(sqrtx)))/(sqrtx)dx=f(x)+c (where, c...

    Text Solution

    |

  20. Let A=[(1,3cos 2theta,1),(sin2theta, 1, 3 cos 2 theta),(1, sin 2 theta...

    Text Solution

    |