Home
Class 12
MATHS
If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+...

If `(1+x+x^(2))^(8)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(16)x^(16)` for all values of x, then `(a_(5))/(100)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coefficient \( a_5 \) in the expansion of \( (1 + x + x^2)^8 \) and then compute \( \frac{a_5}{100} \). ### Step-by-Step Solution 1. **Identify the Expression**: We start with the expression \( (1 + x + x^2)^8 \). 2. **Use the Multinomial Theorem**: The multinomial theorem states that: \[ (x_1 + x_2 + \ldots + x_m)^n = \sum_{k_1 + k_2 + \ldots + k_m = n} \frac{n!}{k_1! k_2! \ldots k_m!} x_1^{k_1} x_2^{k_2} \ldots x_m^{k_m} \] In our case, \( x_1 = 1 \), \( x_2 = x \), \( x_3 = x^2 \), and \( n = 8 \). 3. **Find the Coefficient of \( x^5 \)**: We need to find the combinations of \( k_1, k_2, k_3 \) such that: \[ k_1 + k_2 + k_3 = 8 \quad \text{and} \quad k_2 + 2k_3 = 5 \] Here, \( k_1 \) is the number of times we choose \( 1 \), \( k_2 \) is the number of times we choose \( x \), and \( k_3 \) is the number of times we choose \( x^2 \). 4. **Express \( k_1 \) in terms of \( k_2 \) and \( k_3 \)**: From \( k_1 + k_2 + k_3 = 8 \), we can express \( k_1 \) as: \[ k_1 = 8 - k_2 - k_3 \] Substitute this into the second equation: \[ k_2 + 2k_3 = 5 \] 5. **Solve for Non-negative Integer Solutions**: Rearranging gives: \[ k_2 = 5 - 2k_3 \] Now substitute \( k_2 \) back into the equation for \( k_1 \): \[ k_1 = 8 - (5 - 2k_3) - k_3 = 3 + k_3 \] Thus, we have: \[ k_1 = 3 + k_3, \quad k_2 = 5 - 2k_3 \] We need \( k_1, k_2, k_3 \) to be non-negative integers: - \( k_3 \geq 0 \) - \( 5 - 2k_3 \geq 0 \) implies \( k_3 \leq 2.5 \), hence \( k_3 \) can be \( 0, 1, 2 \). 6. **Calculate Valid Combinations**: - For \( k_3 = 0 \): \( k_1 = 3, k_2 = 5 \) - For \( k_3 = 1 \): \( k_1 = 4, k_2 = 3 \) - For \( k_3 = 2 \): \( k_1 = 5, k_2 = 1 \) 7. **Calculate Coefficients**: Using the multinomial coefficient: - For \( (3, 5, 0) \): \[ \frac{8!}{3!5!0!} = \frac{40320}{6 \cdot 120} = 56 \] - For \( (4, 3, 1) \): \[ \frac{8!}{4!3!1!} = \frac{40320}{24 \cdot 6 \cdot 1} = 280 \] - For \( (5, 1, 2) \): \[ \frac{8!}{5!1!2!} = \frac{40320}{120 \cdot 1 \cdot 2} = 168 \] 8. **Sum the Coefficients**: Thus, the total coefficient \( a_5 \) is: \[ a_5 = 56 + 280 + 168 = 504 \] 9. **Calculate \( \frac{a_5}{100} \)**: Finally, we compute: \[ \frac{a_5}{100} = \frac{504}{100} = 5.04 \] ### Final Answer: \[ \frac{a_5}{100} = 5.04 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 76

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 78

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

(1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(18)x^(18)

Let (x+10)^(50)+(x-10)^(50)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(50)x^(50) for all x in R , then (a_(2))/(a_(0)) is equal to

Let (x + 10)^(50) + (x - 10)^(50) = a_(0) + a_(1) x + a_(2)X^(2) + ….. + a_(50) x^(50) , for all x in R , then (a_(2))/(a_(0)) is equal to

Let (1+x+x^(2))^(5)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(10)x^(10) then value of a_(1)+a_(4)+a_(7)+a_(10) is ……

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of (a_(39))/(a_(40)) , is

If (1+2x+3x^(2) )^(10) = a_(0) + a_(1) x + a_(2) x^(2) +…+a_(20) x^(20) , then

If (1 + x + x^(2))^(48) = a_(0) + a_(1) x + a_(2) x^(2) + ... + a_(96) x^(96) , then value of a_(0) - a_(2) + a_(4) - a_(6) + … + a_(96) is

If (1-x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)++a_(2n)x^(2n) find the value of a_(0)+a_(2)+a_(4)++a_(2n)

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

NTA MOCK TESTS-NTA JEE MOCK TEST 77-MATHEMATICS
  1. If S=sum(n=1)^(9999)(1)/((sqrtn+sqrt(n+1))(root4(n)+root4(n+1))), then...

    Text Solution

    |

  2. Find the number of solution of the equation cot^(2) (sin x+3)=1 in [0,...

    Text Solution

    |

  3. A special fair cubic die is rolled which has one blue side, two red si...

    Text Solution

    |

  4. If the angles between the vectors veca and vecb, vecb and vecc, vecc a...

    Text Solution

    |

  5. The x - intercept of the common tangent to the parabolas y^(2)=32x and...

    Text Solution

    |

  6. Let A(x)=[(0,x-2,x-3),(x+2,0,x-5),(x+3,x+5,0)], then the matrix A(0)...

    Text Solution

    |

  7. Let R = {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on the ...

    Text Solution

    |

  8. The domain of definiton of the function f(x)=(1)/(sqrt(x^(12)-x^(9)+x^...

    Text Solution

    |

  9. If f(x)={{:(x^(2),:,"when x is rational"),(2-x,:,"when x is irrational...

    Text Solution

    |

  10. The median of a set of 9 distinct observations is 20.5. If each of the...

    Text Solution

    |

  11. The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1...

    Text Solution

    |

  12. Which of the following functions satisfies all contains of the Rolle's...

    Text Solution

    |

  13. Consider the definite integrals A=int(0)^(pi)sinx cosx^(2)xdx and B=in...

    Text Solution

    |

  14. If the circle whose diameter is the major axis of the ellipse (x^(2))/...

    Text Solution

    |

  15. The equation of the curve satisfying the differential equation xe^(x)s...

    Text Solution

    |

  16. Let sqrta+sqrtd=sqrtc+sqrtb and ad=bc, where a, b, c, in R^(+). If the...

    Text Solution

    |

  17. If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+…a(16)x^(16) for all values of...

    Text Solution

    |

  18. The value of lim(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

    Text Solution

    |

  19. The integral I=int(e^(sqrtx)cos(e^(sqrtx)))/(sqrtx)dx=f(x)+c (where, c...

    Text Solution

    |

  20. Let A=[(1,3cos 2theta,1),(sin2theta, 1, 3 cos 2 theta),(1, sin 2 theta...

    Text Solution

    |