Home
Class 12
MATHS
Let A=[(1,3cos 2theta,1),(sin2theta, 1, ...

Let `A=[(1,3cos 2theta,1),(sin2theta, 1, 3 cos 2 theta),(1, sin 2 theta, 1)]` the maximum value of `|A|` is equal to k, then `(k-3)^(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the matrix \( A \) and then determine its maximum value. Finally, we will compute \( (k-3)^2 \) where \( k \) is the maximum value of the determinant. Given the matrix: \[ A = \begin{pmatrix} 1 & 3 \cos 2\theta & 1 \\ \sin 2\theta & 1 & 3 \cos 2\theta \\ 1 & \sin 2\theta & 1 \end{pmatrix} \] ### Step 1: Calculate the Determinant of Matrix \( A \) Using the determinant formula for a \( 3 \times 3 \) matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \( A \): - \( a = 1 \), \( b = 3 \cos 2\theta \), \( c = 1 \) - \( d = \sin 2\theta \), \( e = 1 \), \( f = 3 \cos 2\theta \) - \( g = 1 \), \( h = \sin 2\theta \), \( i = 1 \) Calculating the determinant: \[ |A| = 1 \cdot (1 \cdot 1 - 3 \cos 2\theta \cdot \sin 2\theta) - (3 \cos 2\theta) \cdot (\sin 2\theta \cdot 1 - 3 \cos 2\theta \cdot 1) + 1 \cdot (\sin 2\theta \cdot \sin 2\theta - 1 \cdot 1) \] Calculating each term: 1. First term: \( 1 - 3 \cos 2\theta \sin 2\theta \) 2. Second term: \( -3 \cos 2\theta (\sin 2\theta - 3 \cos 2\theta) = -3 \cos 2\theta \sin 2\theta + 9 \cos^2 2\theta \) 3. Third term: \( \sin^2 2\theta - 1 \) Combining all these: \[ |A| = (1 - 3 \cos 2\theta \sin 2\theta) + (-3 \cos 2\theta \sin 2\theta + 9 \cos^2 2\theta) + (\sin^2 2\theta - 1) \] Simplifying: \[ |A| = -6 \cos 2\theta \sin 2\theta + 9 \cos^2 2\theta + \sin^2 2\theta \] \[ = -6 \cos 2\theta \sin 2\theta + 9 \cos^2 2\theta + (1 - \cos^2 2\theta) \] \[ = -6 \cos 2\theta \sin 2\theta + 8 \cos^2 2\theta + 1 \] ### Step 2: Find the Maximum Value of the Determinant To find the maximum value of \( |A| \), we can express it in terms of a single trigonometric function. We know that: \[ \sin 2\theta = 2 \sin \theta \cos \theta \quad \text{and} \quad \cos 2\theta = 2 \cos^2 \theta - 1 \] Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can analyze the expression: \[ |A| = 1 + 8 \cos^2 2\theta - 6 \cdot 2 \sin \theta \cos \theta \cdot (2 \cos^2 \theta - 1) \] This expression can be maximized using calculus or by analyzing the ranges of sine and cosine functions. ### Step 3: Determine \( k \) After finding the maximum value of \( |A| \), we denote it as \( k \). From the analysis, we find that: \[ k = 10 \] ### Step 4: Calculate \( (k-3)^2 \) Now, we compute: \[ (k - 3)^2 = (10 - 3)^2 = 7^2 = 49 \] ### Final Answer Thus, the value of \( (k - 3)^2 \) is: \[ \boxed{49} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 76

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 78

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If Delta=det[[1,3cos theta,1sin theta,1,3cos theta1,sin theta,1]] then the (1)/(1000),[maximum value of Delta- minimum value of Delta|^(3)] is equal to

If Delta=det[[1,3cos theta,1sin theta,1,3cos theta1,sin theta,1]], then the 1000, l|maximum value of Delta- minimum value of Delta|^(3)] is equal to.

(1+sin2 theta-cos2 theta)/(1+sin2 theta+cos2 theta)=tan theta

(1+cos theta)/(sin^(2)theta) is equal to

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta) =

If sin^6 theta + cos^6 theta + k sin^2 2theta =1 , then k is equal to :

(sin3 theta+cos3 theta)/(cos theta-sin theta)=1+2xx sin2 theta

sin theta+sin2 theta+sin3 theta=1+cos theta+cos2 theta

Let f(theta)=|(1,cos theta, -1),(-sin theta, 1, -cos theta),(-1,sin theta, 1)| Suppose A and B are respectively maximum and minimum value of f(theta) . Then (A,B) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 77-MATHEMATICS
  1. If S=sum(n=1)^(9999)(1)/((sqrtn+sqrt(n+1))(root4(n)+root4(n+1))), then...

    Text Solution

    |

  2. Find the number of solution of the equation cot^(2) (sin x+3)=1 in [0,...

    Text Solution

    |

  3. A special fair cubic die is rolled which has one blue side, two red si...

    Text Solution

    |

  4. If the angles between the vectors veca and vecb, vecb and vecc, vecc a...

    Text Solution

    |

  5. The x - intercept of the common tangent to the parabolas y^(2)=32x and...

    Text Solution

    |

  6. Let A(x)=[(0,x-2,x-3),(x+2,0,x-5),(x+3,x+5,0)], then the matrix A(0)...

    Text Solution

    |

  7. Let R = {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on the ...

    Text Solution

    |

  8. The domain of definiton of the function f(x)=(1)/(sqrt(x^(12)-x^(9)+x^...

    Text Solution

    |

  9. If f(x)={{:(x^(2),:,"when x is rational"),(2-x,:,"when x is irrational...

    Text Solution

    |

  10. The median of a set of 9 distinct observations is 20.5. If each of the...

    Text Solution

    |

  11. The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1...

    Text Solution

    |

  12. Which of the following functions satisfies all contains of the Rolle's...

    Text Solution

    |

  13. Consider the definite integrals A=int(0)^(pi)sinx cosx^(2)xdx and B=in...

    Text Solution

    |

  14. If the circle whose diameter is the major axis of the ellipse (x^(2))/...

    Text Solution

    |

  15. The equation of the curve satisfying the differential equation xe^(x)s...

    Text Solution

    |

  16. Let sqrta+sqrtd=sqrtc+sqrtb and ad=bc, where a, b, c, in R^(+). If the...

    Text Solution

    |

  17. If (1+x+x^(2))^(8)=a(0)+a(1)x+a(2)x^(2)+…a(16)x^(16) for all values of...

    Text Solution

    |

  18. The value of lim(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

    Text Solution

    |

  19. The integral I=int(e^(sqrtx)cos(e^(sqrtx)))/(sqrtx)dx=f(x)+c (where, c...

    Text Solution

    |

  20. Let A=[(1,3cos 2theta,1),(sin2theta, 1, 3 cos 2 theta),(1, sin 2 theta...

    Text Solution

    |