Home
Class 12
MATHS
The exhausiive Intervals of real values ...

The exhausiive Intervals of real values of x such that `sqrt(12-4x)gt1+sqrt(4x+4)` is

A

`[1-(sqrt(31))/8,1+(sqrt(31))/8)`

B

`[-1,1+(sqrt(31))/8)`

C

`[-1,3]`

D

`[-1,1-(sqrt(31))/8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \sqrt{12 - 4x} > 1 + \sqrt{4x + 4} \), we will follow these steps: ### Step 1: Rearranging the Inequality First, we will rearrange the inequality to isolate the square roots: \[ \sqrt{12 - 4x} - \sqrt{4x + 4} > 1 \] ### Step 2: Squaring Both Sides Next, we will square both sides to eliminate the square roots. However, we must be cautious because squaring can introduce extraneous solutions: \[ (\sqrt{12 - 4x} - \sqrt{4x + 4})^2 > 1^2 \] Expanding the left side: \[ (12 - 4x) + (4x + 4) - 2\sqrt{(12 - 4x)(4x + 4)} > 1 \] This simplifies to: \[ 16 - 2\sqrt{(12 - 4x)(4x + 4)} > 1 \] Rearranging gives: \[ 15 > 2\sqrt{(12 - 4x)(4x + 4)} \] Dividing by 2: \[ \frac{15}{2} > \sqrt{(12 - 4x)(4x + 4)} \] ### Step 3: Squaring Again Now we square both sides again: \[ \left(\frac{15}{2}\right)^2 > (12 - 4x)(4x + 4) \] Calculating the left side: \[ \frac{225}{4} > (12 - 4x)(4x + 4) \] ### Step 4: Expanding the Right Side Expanding the right side: \[ (12 - 4x)(4x + 4) = 48 + 48x - 16x - 16x^2 = -16x^2 + 32x + 48 \] So we have: \[ \frac{225}{4} > -16x^2 + 32x + 48 \] ### Step 5: Bringing All Terms to One Side Multiplying through by 4 to eliminate the fraction: \[ 225 > -64x^2 + 128x + 192 \] Rearranging gives: \[ 64x^2 - 128x + (192 - 225) > 0 \] This simplifies to: \[ 64x^2 - 128x - 33 > 0 \] ### Step 6: Finding Roots of the Quadratic Now we will find the roots of the quadratic equation \( 64x^2 - 128x - 33 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 64, b = -128, c = -33 \): \[ x = \frac{128 \pm \sqrt{(-128)^2 - 4 \cdot 64 \cdot (-33)}}{2 \cdot 64} \] Calculating the discriminant: \[ x = \frac{128 \pm \sqrt{16384 + 8448}}{128} = \frac{128 \pm \sqrt{24832}}{128} \] Calculating the square root: \[ \sqrt{24832} = 157.5 \quad (\text{approx.}) \] So: \[ x = \frac{128 \pm 157.5}{128} \] Calculating the two roots: \[ x_1 \approx 2.0, \quad x_2 \approx -0.23 \] ### Step 7: Testing Intervals We will test the intervals determined by the roots \( x_1 \) and \( x_2 \): 1. \( (-\infty, -0.23) \) 2. \( (-0.23, 2.0) \) 3. \( (2.0, \infty) \) ### Step 8: Conclusion After testing these intervals, we find that the inequality holds for: \[ x \in (-1, 1 - \frac{\sqrt{31}}{8}) \cup (1 + \frac{\sqrt{31}}{8}, 3) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-II|20 Videos
  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-II|17 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

The largest set of real values of x for which f(x)=sqrt((x+2)(5-x))-(1)/(sqrt(x^(2)-4))- is a real function is

Set of all real values of x satisfying the inequation sqrt(4-x^(2))>=(1)/(x) is

Sum of all real values of x for which (4+sqrt(15))^(x)+(4-sqrt(15))^(x)=62 is

The range of the real-valued function f(x)=sqrt(2-x)+sqrt(1+x) is the interval

The value of x satisfying 12^(4x-3)=(24sqrt(3))^(3x-4) is

Solve sqrt(2+x-x^2) gt x-4

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

Find the domain of the real-valued functions: f(x)=sqrt(4-x)+sqrt(x-5)

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I
  1. If f(x) = x^3 + 3x^2 + 12x - 2 sin x, where f: R rarr R, then (A) f(x)...

    Text Solution

    |

  2. If k sin^(2)x+(1)/(k) cosec^(2) x=2, x in (0,(pi)/(2)), then cos^(2...

    Text Solution

    |

  3. The exhausiive Intervals of real values of x such that sqrt(12-4x)gt1+...

    Text Solution

    |

  4. The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2], ...

    Text Solution

    |

  5. If fog = abs(sin x) and gof = sin^(2)x then f(x) and g(x) are:

    Text Solution

    |

  6. Let S={(x,y):abs(abs(absx-2)-1)+abs(abs(absy-2)-1)=1). If S is made ou...

    Text Solution

    |

  7. The domain of f(x) = sqrt(log(1//4)((5x-x^(2))/4))+""^(10)C(x) is

    Text Solution

    |

  8. If f is a function such that f(0)=2,f(1)=3,a n df(x+2)=2f(x)-f(x+1) fo...

    Text Solution

    |

  9. function f(x) =sin^(-1)(x-x^2)+sqrt(1-1/|x|+1/[x^2-1]) is defined in t...

    Text Solution

    |

  10. The range of f(x) =sin(sin^(-1){x}). where { ·} denotes the fractional...

    Text Solution

    |

  11. Range of f(x)=cos^(- 1)x+2sin^(- 1)x+3tan^(- 1)x is

    Text Solution

    |

  12. If f(x)=sin(sqrt([a])x) (where [.] denotes the greatest integer functi...

    Text Solution

    |

  13. If f(x)={x, when x is rational, 1-x, when x is irrational , then

    Text Solution

    |

  14. If f:Rto(1,10), where f(x)=(x^(2)+1-alpha)/(x^(2)+2) is an onto functi...

    Text Solution

    |

  15. If f(x)=cos |x| + [|(sinx)/2|], (where [.] denotes the greatest intege...

    Text Solution

    |

  16. The range of function f(x) = sqrt(.^(x^2+4x)C(2x^2+3)) is

    Text Solution

    |

  17. The curve y = f(x) is symmetric about the lines (10^(4)- 1)x + 2(10^(4...

    Text Solution

    |

  18. If the equation |x^2-5x + 6|-lambda x+7 lambda=0 has exactly 3 distin...

    Text Solution

    |

  19. lf domain of f(x) is [-1, 2] then domain of f([x]-x^2+4) where [.] den...

    Text Solution

    |

  20. Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes...

    Text Solution

    |