Home
Class 12
MATHS
If f:Rto(1,10), where f(x)=(x^(2)+1-alph...

If `f:Rto(1,10)`, where `f(x)=(x^(2)+1-alpha)/(x^(2)+2)` is an onto function, then the value `alpha` is

A

19

B

`-19`

C

10

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \alpha \) such that the function \( f(x) = \frac{x^2 + 1 - \alpha}{x^2 + 2} \) is onto the interval \( (1, 10) \). ### Step 1: Set up the equation We start by setting \( f(x) = y \): \[ y = \frac{x^2 + 1 - \alpha}{x^2 + 2} \] Cross-multiplying gives: \[ y(x^2 + 2) = x^2 + 1 - \alpha \] Rearranging this, we have: \[ yx^2 + 2y - x^2 - 1 + \alpha = 0 \] This can be rewritten as: \[ (y - 1)x^2 + (2y + \alpha - 1) = 0 \] ### Step 2: Determine conditions for real roots For \( f(x) \) to be onto, the quadratic in \( x^2 \) must have real roots for all \( y \) in the interval \( (1, 10) \). The discriminant \( D \) of the quadratic must be non-negative: \[ D = b^2 - 4ac \] Here, \( a = y - 1 \), \( b = 0 \), and \( c = 2y + \alpha - 1 \). Thus, we have: \[ D = 0^2 - 4(y - 1)(2y + \alpha - 1) \geq 0 \] This simplifies to: \[ -4(y - 1)(2y + \alpha - 1) \geq 0 \] This implies: \[ (y - 1)(2y + \alpha - 1) \leq 0 \] ### Step 3: Analyze the inequality The product \( (y - 1)(2y + \alpha - 1) \leq 0 \) indicates that one factor must be non-positive while the other is non-negative. 1. **For \( y - 1 \leq 0 \)**: This occurs when \( y \leq 1 \), which is outside our interval \( (1, 10) \). 2. **For \( y - 1 \geq 0 \)**: This occurs when \( y \geq 1 \). Thus, we focus on the second factor: \[ 2y + \alpha - 1 \leq 0 \] This gives: \[ \alpha \leq 1 - 2y \] ### Step 4: Find the bounds for \( \alpha \) Now, we need to analyze this inequality for the maximum value of \( y \) in the interval \( (1, 10) \): - At \( y = 10 \): \[ \alpha \leq 1 - 2(10) = 1 - 20 = -19 \] - At \( y = 1 \): \[ \alpha \leq 1 - 2(1) = 1 - 2 = -1 \] ### Step 5: Determine the value of \( \alpha \) For \( f(x) \) to be onto \( (1, 10) \), we need \( \alpha \) to be such that the quadratic has real roots for all \( y \) in the interval. Therefore, we need: \[ \alpha = -1 \] ### Conclusion Thus, the value of \( \alpha \) such that \( f(x) \) is an onto function from \( \mathbb{R} \) to \( (1, 10) \) is: \[ \alpha = -1 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-II|20 Videos
  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-II|17 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

If f:R rarr [pi/6,pi/2], f(x)=sin^(-1)((x^(2)-a)/(x^(2)+1)) is an onto function, the set of values a is

If the function f(x) = x^(2) + alpha//x has a local minimum at x=2, then the value of alpha is

If f:A rarr B defined as f(x)=x^(2)+2x+(1)/(1+(x+1)^(2)) is onto function,then set B is equal to

If f:R rarr R,f(x)=(alpha x^(2)+6x-8)/(alpha+6x-8x^(2)) is onto then alpha in

Let f(x) :R->R,f(x)={(2x+alpha^2,xge2),((alpha x)/2+10,x lt 2)) If f(x) is onto function then alpha belongs to (A) [1,4] (B) [-2,3] (C) [0,3] (D) [2,5]

" Let "f(x)=(alpha x)/(x+1),x!=-1" and "f(f(x))=x" ,then the value of "(alpha^(2))/(2)" is "

If f(x)=(tan x cot alpha)^((1)/(x-a)),x!=alpha is continuous at x=alpha, then the value of f(alpha) is

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I
  1. If f(x)=sin(sqrt([a])x) (where [.] denotes the greatest integer functi...

    Text Solution

    |

  2. If f(x)={x, when x is rational, 1-x, when x is irrational , then

    Text Solution

    |

  3. If f:Rto(1,10), where f(x)=(x^(2)+1-alpha)/(x^(2)+2) is an onto functi...

    Text Solution

    |

  4. If f(x)=cos |x| + [|(sinx)/2|], (where [.] denotes the greatest intege...

    Text Solution

    |

  5. The range of function f(x) = sqrt(.^(x^2+4x)C(2x^2+3)) is

    Text Solution

    |

  6. The curve y = f(x) is symmetric about the lines (10^(4)- 1)x + 2(10^(4...

    Text Solution

    |

  7. If the equation |x^2-5x + 6|-lambda x+7 lambda=0 has exactly 3 distin...

    Text Solution

    |

  8. lf domain of f(x) is [-1, 2] then domain of f([x]-x^2+4) where [.] den...

    Text Solution

    |

  9. Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes...

    Text Solution

    |

  10. The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in ...

    Text Solution

    |

  11. Let Sn=sum(r+1)^(n)r ! (n>6), then Sn-7[(Sn)/7] (where [.] denotes the...

    Text Solution

    |

  12. Period of the function f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]} is...

    Text Solution

    |

  13. The graph of y = f(x} is shown, then the number of solutions of f(f(x}...

    Text Solution

    |

  14. If f(x) = sin^(-1)(m^(2) -3m+ 1)sec (absx)/3-[e^(m-4)](sin{x}), where ...

    Text Solution

    |

  15. If f(x)=sinx+cosx and g(x)=x^2-1, then g(f (x)) is invertible in the ...

    Text Solution

    |

  16. If f(x)=abs(x-1)+abs(x-4)+abs(x-9)+…+abs(x-2500)AA x inR, where m and ...

    Text Solution

    |

  17. Domain of the function f(x) = sin^(-1) [1 + cos x]- sqrt(16-x^(2)) ([....

    Text Solution

    |

  18. The number of solutions of log(x)3. = 2x-3 is,

    Text Solution

    |

  19. Domain of f(x)=sqrt((x-1)/(x-2{x})), where {.} denotes the fractional ...

    Text Solution

    |

  20. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |