Home
Class 12
MATHS
If f(x) = sin^(-1)(m^(2) -3m+ 1)sec (abs...

If `f(x) = sin^(-1)(m^(2) -3m+ 1)sec (absx)/3-[e^(m-4)](sin{x})`, where {} denotes fractional part of x. If f(x) if f(x) is periodic, then number of possible integral values of m is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of possible integral values of \( m \) for which the function \[ f(x) = \sin^{-1}(m^2 - 3m + 1) \sec\left(\frac{|x|}{3}\right) - e^{m-4} \sin\{x\} \] is periodic, we will follow these steps: ### Step 1: Determine the range of \( \sin^{-1}(m^2 - 3m + 1) \) The function \( \sin^{-1}(y) \) is defined for \( y \) in the range \([-1, 1]\). Therefore, we need to ensure that: \[ -1 \leq m^2 - 3m + 1 \leq 1 \] ### Step 2: Solve the inequalities #### Inequality 1: \( m^2 - 3m + 1 \geq -1 \) This simplifies to: \[ m^2 - 3m + 2 \geq 0 \] Factoring gives: \[ (m-1)(m-2) \geq 0 \] The critical points are \( m = 1 \) and \( m = 2 \). The solution to this inequality is: \[ m \leq 1 \quad \text{or} \quad m \geq 2 \] #### Inequality 2: \( m^2 - 3m + 1 \leq 1 \) This simplifies to: \[ m^2 - 3m \leq 0 \] Factoring gives: \[ m(m-3) \leq 0 \] The critical points are \( m = 0 \) and \( m = 3 \). The solution to this inequality is: \[ 0 \leq m \leq 3 \] ### Step 3: Find the intersection of the two ranges From the first inequality, we have \( m \leq 1 \) or \( m \geq 2 \). From the second inequality, we have \( 0 \leq m \leq 3 \). The intersection of these two ranges is: - For \( m \leq 1 \): \( 0 \leq m \leq 1 \) - For \( m \geq 2 \): \( 2 \leq m \leq 3 \) Thus, the combined range for \( m \) is: \[ 0 \leq m \leq 1 \quad \text{and} \quad 2 \leq m \leq 3 \] ### Step 4: Identify integral values of \( m \) The integral values of \( m \) in the ranges \( [0, 1] \) and \( [2, 3] \) are: - From \( [0, 1] \): \( m = 0, 1 \) - From \( [2, 3] \): \( m = 2, 3 \) Thus, the possible integral values of \( m \) are \( 0, 1, 2, 3 \). ### Step 5: Conclusion The total number of possible integral values of \( m \) is: \[ \text{Total integral values} = 4 \] ### Final Answer The number of possible integral values of \( m \) is \( 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-II|20 Videos
  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-II|17 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)={x}+sin ax (where {} denotes the fractional part function) is periodic,then

Domain of f(x)=(1)/(sqrt({x+1}-x^(2)+2x)) where {} denotes fractional part of x.

Find the period f(x)=sin x+{x}, where {x} is the fractional part of x.

The range of f(x) =sin(sin^(-1){x}) . where { ·} denotes the fractional part of x, is

If f(x) = e^(x) , then lim_(xto0) (f(x))^((1)/({f(x)})) (where { } denotes the fractional part of x) is equal to -

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

If f(x)=e^(x), then lim_(x rarr oo)f(f(x))^((1)/()(x)})); is equal to (where {x} denotes fractional part of x).

Period of the function f(x)=cos(cos pi x)+e^({4x}), where {.} denotes the fractional part of x, is

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I
  1. Period of the function f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]} is...

    Text Solution

    |

  2. The graph of y = f(x} is shown, then the number of solutions of f(f(x}...

    Text Solution

    |

  3. If f(x) = sin^(-1)(m^(2) -3m+ 1)sec (absx)/3-[e^(m-4)](sin{x}), where ...

    Text Solution

    |

  4. If f(x)=sinx+cosx and g(x)=x^2-1, then g(f (x)) is invertible in the ...

    Text Solution

    |

  5. If f(x)=abs(x-1)+abs(x-4)+abs(x-9)+…+abs(x-2500)AA x inR, where m and ...

    Text Solution

    |

  6. Domain of the function f(x) = sin^(-1) [1 + cos x]- sqrt(16-x^(2)) ([....

    Text Solution

    |

  7. The number of solutions of log(x)3. = 2x-3 is,

    Text Solution

    |

  8. Domain of f(x)=sqrt((x-1)/(x-2{x})), where {.} denotes the fractional ...

    Text Solution

    |

  9. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |

  10. The region M consists of all the points (x, y) satisfying the inequali...

    Text Solution

    |

  11. The domain of the function f(x)=sqrt(((sinx-e^(x))(cosx-3)("In"x+2))/(...

    Text Solution

    |

  12. A function f: I to I, f(x + y) = f(x) + f(y) - 1/2 AAx, y in I, where ...

    Text Solution

    |

  13. Consider the function f: A -> A where A:{1,2,3,4,5} which satisfy the...

    Text Solution

    |

  14. If f(x+y)=f(x)-f(y)+2xy-1AAx,yinR. Also if f(x) is differentiable and ...

    Text Solution

    |

  15. If f(x) is a real-valued function discontinuous at all integral points...

    Text Solution

    |

  16. A function f from integers to integers is defined as f(x)={{:(n+3",",n...

    Text Solution

    |

  17. f(x)+f(1-1/x)=1+x for x in R-{0,1}. Find the value of 4f(2).

    Text Solution

    |

  18. Xa n dY are two sets and f: XvecYdot If {f(c)=y ; csubX ,ysubY}a n d{f...

    Text Solution

    |

  19. The range of the function f(x) = sqrt(4 - x^2) + sqrt(x^2 - 1) is

    Text Solution

    |

  20. The domain function f(x) = 1/ (sqrt((|sin^-1x|-cos^-1|x|))) is given b...

    Text Solution

    |