Home
Class 12
MATHS
Domain of the function f(x) = sin^(-1) [...

Domain of the function `f(x) = sin^(-1) [1 + cos x]- sqrt(16-x^(2))` ([.) denotes the greatest integer function) is

A

`[-4,4]`

B

`(-4,4)`

C

`[0,2pi]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sin^{-1}(1 + \cos x) - \sqrt{16 - x^2} \), we need to analyze both components of the function separately. ### Step 1: Analyze the square root component The first component we analyze is \( -\sqrt{16 - x^2} \). For the square root to be defined, the expression inside the square root must be non-negative: \[ 16 - x^2 \geq 0 \] Rearranging gives: \[ x^2 \leq 16 \] Taking the square root of both sides, we find: \[ -4 \leq x \leq 4 \] Thus, the domain from this part is: \[ x \in [-4, 4] \] ### Step 2: Analyze the sine inverse component Next, we analyze the component \( \sin^{-1}(1 + \cos x) \). The sine inverse function is defined for inputs in the range \([-1, 1]\). Therefore, we need: \[ -1 \leq 1 + \cos x \leq 1 \] Breaking this down into two inequalities: 1. **First Inequality**: \[ -1 \leq 1 + \cos x \implies -2 \leq \cos x \] Since the cosine function has a range of \([-1, 1]\), this inequality is always satisfied for all \( x \). 2. **Second Inequality**: \[ 1 + \cos x \leq 1 \implies \cos x \leq 0 \] This means that \( x \) must be in the intervals where the cosine function is non-positive. The cosine function is non-positive in the intervals: \[ x \in \left[\frac{\pi}{2} + 2n\pi, \frac{3\pi}{2} + 2n\pi\right], \quad n \in \mathbb{Z} \] ### Step 3: Combine the conditions Now we need to find the intersection of the two conditions: 1. From the square root condition, we have \( x \in [-4, 4] \). 2. From the sine inverse condition, we have \( x \) values where \( \cos x \leq 0 \). The critical points in the interval \( [-4, 4] \) where \( \cos x = 0 \) are \( x = \frac{\pi}{2} \) and \( x = \frac{3\pi}{2} \). Calculating these values: - \( \frac{\pi}{2} \approx 1.57 \) - \( \frac{3\pi}{2} \approx 4.71 \) Thus, within the interval \( [-4, 4] \), the relevant interval for \( x \) where \( \cos x \leq 0 \) is: \[ x \in \left[\frac{\pi}{2}, 4\right] \] ### Step 4: Exclude points where the function is undefined Next, we check for points where the function is undefined. The term \( \sin^{-1}(1 + \cos x) \) becomes undefined when \( 1 + \cos x > 1 \), which occurs when \( \cos x = 1 \). This happens at \( x = 2n\pi \). In the interval \( [-4, 4] \), the only point to exclude is \( x = 0 \) (since \( 2n\pi = 0 \) when \( n = 0 \)). ### Final Domain Thus, the domain of the function \( f(x) \) is: \[ x \in \left[\frac{\pi}{2}, 4\right] \setminus \{0\} \] ### Summary The domain of the function is: \[ \left[\frac{\pi}{2}, 4\right] \text{ excluding } 0 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-II|20 Videos
  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-II|17 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Find the range of the following functions: f(x)=[ln(sin^(-1)sqrt(x^(2)+x+1))] [.] denotes the greatest integer function.

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

The range of the function f(x)=(sin(pi[x^(2)+1]))/(x^(4)+1), where [.] denotes the greatest integer function,is

The domain of definition of f(x)=sin^(-1)[2-4x^(2)] is ([.] denotes the greatest integer function).

Let f(x)=sin(tan^(-1)x). Then [f(-sqrt(3))] where [*] denotes the greatest integer function,is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I
  1. If f(x)=sinx+cosx and g(x)=x^2-1, then g(f (x)) is invertible in the ...

    Text Solution

    |

  2. If f(x)=abs(x-1)+abs(x-4)+abs(x-9)+…+abs(x-2500)AA x inR, where m and ...

    Text Solution

    |

  3. Domain of the function f(x) = sin^(-1) [1 + cos x]- sqrt(16-x^(2)) ([....

    Text Solution

    |

  4. The number of solutions of log(x)3. = 2x-3 is,

    Text Solution

    |

  5. Domain of f(x)=sqrt((x-1)/(x-2{x})), where {.} denotes the fractional ...

    Text Solution

    |

  6. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |

  7. The region M consists of all the points (x, y) satisfying the inequali...

    Text Solution

    |

  8. The domain of the function f(x)=sqrt(((sinx-e^(x))(cosx-3)("In"x+2))/(...

    Text Solution

    |

  9. A function f: I to I, f(x + y) = f(x) + f(y) - 1/2 AAx, y in I, where ...

    Text Solution

    |

  10. Consider the function f: A -> A where A:{1,2,3,4,5} which satisfy the...

    Text Solution

    |

  11. If f(x+y)=f(x)-f(y)+2xy-1AAx,yinR. Also if f(x) is differentiable and ...

    Text Solution

    |

  12. If f(x) is a real-valued function discontinuous at all integral points...

    Text Solution

    |

  13. A function f from integers to integers is defined as f(x)={{:(n+3",",n...

    Text Solution

    |

  14. f(x)+f(1-1/x)=1+x for x in R-{0,1}. Find the value of 4f(2).

    Text Solution

    |

  15. Xa n dY are two sets and f: XvecYdot If {f(c)=y ; csubX ,ysubY}a n d{f...

    Text Solution

    |

  16. The range of the function f(x) = sqrt(4 - x^2) + sqrt(x^2 - 1) is

    Text Solution

    |

  17. The domain function f(x) = 1/ (sqrt((|sin^-1x|-cos^-1|x|))) is given b...

    Text Solution

    |

  18. If f(x)=abs(1/(abs(absx-2))+1/(abs(absx-3))) and g(x)=sin^(-1)(2sqrtx)...

    Text Solution

    |

  19. If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0, t...

    Text Solution

    |

  20. Statement -1: f(x) is invertible function and f(f(x)) = x AA x in doma...

    Text Solution

    |