Home
Class 12
MATHS
The domain of the function f(x)=sqrt(((s...

The domain of the function `f(x)=sqrt(((sinx-e^(x))(cosx-3)("In"x+2))/((x^(4)-x+1/2)(2x-7)^(30)))` belongs to

A

`[1/(e^(2)),7/2)cup(7/2,oo)`

B

`(-1/2,0)`

C

`(0,1/(e^(5)))`

D

`phi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \[ f(x) = \sqrt{\frac{(\sin x - e^x)(\cos x - 3)(\ln x + 2)}{(x^4 - x + \frac{1}{2})(2x - 7)^{30}}} \] we need to ensure that the expression inside the square root is non-negative and that the denominator is not zero. ### Step 1: Identify the conditions for the denominator The denominator is given by \[ (x^4 - x + \frac{1}{2})(2x - 7)^{30} \] 1. **Condition 1:** The term \( (2x - 7)^{30} \) must not be zero. Thus, we have: \[ 2x - 7 \neq 0 \implies x \neq \frac{7}{2} \] 2. **Condition 2:** The term \( x^4 - x + \frac{1}{2} \) must not be zero. To analyze this, we note that: - The polynomial \( x^4 - x + \frac{1}{2} \) is a continuous function. - Since \( x^4 \) grows faster than \( x \) for large \( x \), and the constant term is positive, this polynomial does not cross zero for any real \( x \). Thus, it is always positive. ### Step 2: Identify the conditions for the numerator The numerator is given by \[ (\sin x - e^x)(\cos x - 3)(\ln x + 2) \] 1. **Condition 3:** The term \( \ln x + 2 \) must be non-negative: \[ \ln x + 2 \geq 0 \implies \ln x \geq -2 \implies x \geq e^{-2} = \frac{1}{e^2} \] 2. **Condition 4:** The term \( \cos x - 3 \) is always negative since \( \cos x \) ranges from -1 to 1. Thus, \( \cos x - 3 < 0 \) for all \( x \). 3. **Condition 5:** The term \( \sin x - e^x \) must be non-negative. Since \( e^x \) grows exponentially while \( \sin x \) oscillates between -1 and 1, for \( x > 0 \), \( e^x \) will always be greater than \( \sin x \). Therefore, \( \sin x - e^x < 0 \) for \( x > 0 \). ### Step 3: Combine conditions From the conditions derived: - \( x \geq \frac{1}{e^2} \) (from \( \ln x + 2 \geq 0 \)) - \( x \neq \frac{7}{2} \) (from the denominator) Thus, the domain of \( f(x) \) can be expressed as: \[ \text{Domain: } x \in \left[\frac{1}{e^2}, \frac{7}{2}\right) \cup \left(\frac{7}{2}, \infty\right) \] ### Final Answer The domain of the function \( f(x) \) is: \[ \left[\frac{1}{e^2}, \frac{7}{2}\right) \cup \left(\frac{7}{2}, \infty\right) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-II|20 Videos
  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level-II|17 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt((2-x)(x-3)) is

The domain of the function f(x)=sqrt(x^(2)) is :

The domain of the function f(x)=sqrt(x^(2)) is :

Domain of the function f(x)=sqrt(2-2x-x^(2)) is

The domain of the function f(x)=1/sqrt((5-x)(x-2)) is

The domain of the function f(x)=sqrt(log_(x^(2)-1)x) is

The domain of the function f(x)=sqrt(x-sqrt(1-x^(2))) is

The domain of the function f(x)=1/[[x]]+sqrt((2-x)x) is

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I
  1. If f(x)=abs(x-1)+abs(x-4)+abs(x-9)+…+abs(x-2500)AA x inR, where m and ...

    Text Solution

    |

  2. Domain of the function f(x) = sin^(-1) [1 + cos x]- sqrt(16-x^(2)) ([....

    Text Solution

    |

  3. The number of solutions of log(x)3. = 2x-3 is,

    Text Solution

    |

  4. Domain of f(x)=sqrt((x-1)/(x-2{x})), where {.} denotes the fractional ...

    Text Solution

    |

  5. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |

  6. The region M consists of all the points (x, y) satisfying the inequali...

    Text Solution

    |

  7. The domain of the function f(x)=sqrt(((sinx-e^(x))(cosx-3)("In"x+2))/(...

    Text Solution

    |

  8. A function f: I to I, f(x + y) = f(x) + f(y) - 1/2 AAx, y in I, where ...

    Text Solution

    |

  9. Consider the function f: A -> A where A:{1,2,3,4,5} which satisfy the...

    Text Solution

    |

  10. If f(x+y)=f(x)-f(y)+2xy-1AAx,yinR. Also if f(x) is differentiable and ...

    Text Solution

    |

  11. If f(x) is a real-valued function discontinuous at all integral points...

    Text Solution

    |

  12. A function f from integers to integers is defined as f(x)={{:(n+3",",n...

    Text Solution

    |

  13. f(x)+f(1-1/x)=1+x for x in R-{0,1}. Find the value of 4f(2).

    Text Solution

    |

  14. Xa n dY are two sets and f: XvecYdot If {f(c)=y ; csubX ,ysubY}a n d{f...

    Text Solution

    |

  15. The range of the function f(x) = sqrt(4 - x^2) + sqrt(x^2 - 1) is

    Text Solution

    |

  16. The domain function f(x) = 1/ (sqrt((|sin^-1x|-cos^-1|x|))) is given b...

    Text Solution

    |

  17. If f(x)=abs(1/(abs(absx-2))+1/(abs(absx-3))) and g(x)=sin^(-1)(2sqrtx)...

    Text Solution

    |

  18. If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0, t...

    Text Solution

    |

  19. Statement -1: f(x) is invertible function and f(f(x)) = x AA x in doma...

    Text Solution

    |

  20. If log(4)(x+2y)+log(4)(x-2y)=1, then Statement-1: (|x|-|y|)(min)=sqr...

    Text Solution

    |