Home
Class 12
MATHS
Find the theta such that (3+2i sin theta...

Find the `theta` such that `(3+2i sin theta)/(1-2 isin theta)` is
(a) real
(b) purely imaginary

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( \theta \) such that the complex number \[ \frac{3 + 2i \sin \theta}{1 - 2i \sin \theta} \] is (a) real and (b) purely imaginary. ### Part (a): When the complex number is real 1. **Identify the imaginary part**: For the complex number to be real, its imaginary part must be zero. The imaginary part of the given complex number can be expressed as: \[ \text{Imaginary part} = \frac{8 \sin \theta}{1 + 4 \sin^2 \theta} \] Set this equal to zero: \[ \frac{8 \sin \theta}{1 + 4 \sin^2 \theta} = 0 \] 2. **Solve for \( \sin \theta \)**: The fraction is zero when the numerator is zero (the denominator cannot be zero): \[ 8 \sin \theta = 0 \implies \sin \theta = 0 \] The solutions for \( \sin \theta = 0 \) are: \[ \theta = n\pi \quad (n \in \mathbb{Z}) \] ### Part (b): When the complex number is purely imaginary 1. **Identify the real part**: For the complex number to be purely imaginary, its real part must be zero. The real part of the given complex number can be expressed as: \[ \text{Real part} = \frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta} \] Set this equal to zero: \[ \frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta} = 0 \] 2. **Solve for \( \sin^2 \theta \)**: The fraction is zero when the numerator is zero: \[ 3 - 4 \sin^2 \theta = 0 \implies 4 \sin^2 \theta = 3 \implies \sin^2 \theta = \frac{3}{4} \] 3. **Find \( \sin \theta \)**: Taking the square root gives: \[ \sin \theta = \pm \frac{\sqrt{3}}{2} \] The angles corresponding to this sine value are: \[ \theta = n\pi + (-1)^n \frac{\pi}{3} \quad (n \in \mathbb{Z}) \] ### Summary of Solutions: - For part (a), \( \theta = n\pi \) where \( n \) is an integer. - For part (b), \( \theta = n\pi + (-1)^n \frac{\pi}{3} \) where \( n \) is an integer.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 2|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 3|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|30 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Find real theta such that (3+2i sin theta)/(1-2i sin theta) is purely real.

Find real theta such that (3+2is int h eta)/(1-2is int h eta) is purely real.

(3+2i sin theta)/(1-2i sin theta) will be purely imaginary,then find theta

(3+2i sin theta)/(1-2i sin theta) will be purely imaginary,then find theta?

Find real theta in (-pi,pi) so that (3+2isintheta)/(1-2isintheta) is purely real .

Find real theta varepsilon (-pi,pi) so that (3+2isintheta)/(1-2isintheta) is purely imaginary .

(i)If z is a complex no.such that |z|=1; prove that (z-1)/(z+1) is purely imaginary.what will be the conclusion if z=1 (ii) Find real theta such that (3+2i sin theta)/(1-2i sin theta) is purely real

If (1+i cos theta)/(1-2i cos theta) is purely imaginary then theta =

If (3+2i sin theta)/(1-2i sin theta) is a real number and 0