Find the `theta` such that `(3+2i sin theta)/(1-2 isin theta)` is (a) real (b) purely imaginary
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the angle \( \theta \) such that the complex number
\[
\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}
\]
is (a) real and (b) purely imaginary.
### Part (a): When the complex number is real
1. **Identify the imaginary part**: For the complex number to be real, its imaginary part must be zero. The imaginary part of the given complex number can be expressed as:
\[
\text{Imaginary part} = \frac{8 \sin \theta}{1 + 4 \sin^2 \theta}
\]
Set this equal to zero:
\[
\frac{8 \sin \theta}{1 + 4 \sin^2 \theta} = 0
\]
2. **Solve for \( \sin \theta \)**: The fraction is zero when the numerator is zero (the denominator cannot be zero):
\[
8 \sin \theta = 0 \implies \sin \theta = 0
\]
The solutions for \( \sin \theta = 0 \) are:
\[
\theta = n\pi \quad (n \in \mathbb{Z})
\]
### Part (b): When the complex number is purely imaginary
1. **Identify the real part**: For the complex number to be purely imaginary, its real part must be zero. The real part of the given complex number can be expressed as:
\[
\text{Real part} = \frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta}
\]
Set this equal to zero:
\[
\frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta} = 0
\]
2. **Solve for \( \sin^2 \theta \)**: The fraction is zero when the numerator is zero:
\[
3 - 4 \sin^2 \theta = 0 \implies 4 \sin^2 \theta = 3 \implies \sin^2 \theta = \frac{3}{4}
\]
3. **Find \( \sin \theta \)**: Taking the square root gives:
\[
\sin \theta = \pm \frac{\sqrt{3}}{2}
\]
The angles corresponding to this sine value are:
\[
\theta = n\pi + (-1)^n \frac{\pi}{3} \quad (n \in \mathbb{Z})
\]
### Summary of Solutions:
- For part (a), \( \theta = n\pi \) where \( n \) is an integer.
- For part (b), \( \theta = n\pi + (-1)^n \frac{\pi}{3} \) where \( n \) is an integer.
Find real theta such that (3+2i sin theta)/(1-2i sin theta) is purely real.
Find real theta such that (3+2is int h eta)/(1-2is int h eta) is purely real.
(3+2i sin theta)/(1-2i sin theta) will be purely imaginary,then find theta
(3+2i sin theta)/(1-2i sin theta) will be purely imaginary,then find theta?
Find real theta in (-pi,pi) so that (3+2isintheta)/(1-2isintheta) is purely real .
Find real theta varepsilon (-pi,pi) so that (3+2isintheta)/(1-2isintheta) is purely imaginary .
(i)If z is a complex no.such that |z|=1; prove that (z-1)/(z+1) is purely imaginary.what will be the conclusion if z=1 (ii) Find real theta such that (3+2i sin theta)/(1-2i sin theta) is purely real
If (1+i cos theta)/(1-2i cos theta) is purely imaginary then theta =
If (3+2i sin theta)/(1-2i sin theta) is a real number and 0