Home
Class 12
MATHS
Simplify (20)/(sqrt3-sqrt(-2))+(30)/(3 s...

Simplify `(20)/(sqrt3-sqrt(-2))+(30)/(3 sqrt(-2)-2sqrt3)-(14)/(2 sqrt3- sqrt(-2))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{20}{\sqrt{3} - \sqrt{-2}} + \frac{30}{3\sqrt{-2} - 2\sqrt{3}} - \frac{14}{2\sqrt{3} - \sqrt{-2}}, \] we will follow these steps: ### Step 1: Rewrite the square roots of negative numbers We know that \(\sqrt{-2} = \sqrt{2}i\). Thus, we can rewrite the expression as: \[ \frac{20}{\sqrt{3} - \sqrt{2}i} + \frac{30}{3\sqrt{2}i - 2\sqrt{3}} - \frac{14}{2\sqrt{3} - \sqrt{2}i}. \] ### Step 2: Rationalize the denominators To simplify each term, we will rationalize the denominators by multiplying the numerator and denominator by the conjugate of the denominator. **First term:** \[ \frac{20}{\sqrt{3} - \sqrt{2}i} \cdot \frac{\sqrt{3} + \sqrt{2}i}{\sqrt{3} + \sqrt{2}i} = \frac{20(\sqrt{3} + \sqrt{2}i)}{(\sqrt{3})^2 - (\sqrt{2}i)^2} = \frac{20(\sqrt{3} + \sqrt{2}i)}{3 + 2} = \frac{20(\sqrt{3} + \sqrt{2}i)}{5} = 4(\sqrt{3} + \sqrt{2}i). \] **Second term:** \[ \frac{30}{3\sqrt{2}i - 2\sqrt{3}} \cdot \frac{3\sqrt{2}i + 2\sqrt{3}}{3\sqrt{2}i + 2\sqrt{3}} = \frac{30(3\sqrt{2}i + 2\sqrt{3})}{(3\sqrt{2}i)^2 - (2\sqrt{3})^2} = \frac{30(3\sqrt{2}i + 2\sqrt{3})}{-18 - 12} = \frac{30(3\sqrt{2}i + 2\sqrt{3})}{-30} = - (3\sqrt{2}i + 2\sqrt{3}). \] **Third term:** \[ -\frac{14}{2\sqrt{3} - \sqrt{2}i} \cdot \frac{2\sqrt{3} + \sqrt{2}i}{2\sqrt{3} + \sqrt{2}i} = -\frac{14(2\sqrt{3} + \sqrt{2}i)}{(2\sqrt{3})^2 - (\sqrt{2}i)^2} = -\frac{14(2\sqrt{3} + \sqrt{2}i)}{12 + 2} = -\frac{14(2\sqrt{3} + \sqrt{2}i)}{14} = -(2\sqrt{3} + \sqrt{2}i). \] ### Step 3: Combine all terms Now we can combine all the simplified terms: \[ 4(\sqrt{3} + \sqrt{2}i) - (3\sqrt{2}i + 2\sqrt{3}) - (2\sqrt{3} + \sqrt{2}i). \] Distributing the negative signs: \[ 4\sqrt{3} + 4\sqrt{2}i - 3\sqrt{2}i - 2\sqrt{3} - 2\sqrt{3} - \sqrt{2}i. \] Combining like terms: 1. For the real parts: \[ 4\sqrt{3} - 2\sqrt{3} - 2\sqrt{3} = 0. \] 2. For the imaginary parts: \[ 4\sqrt{2}i - 3\sqrt{2}i - \sqrt{2}i = 0. \] ### Final Answer Thus, the simplified expression is: \[ 0. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 2|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 3|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|30 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Simplify 20/(sqrt3-sqrt(-2))+30/(3sqrt(-2)-2sqrt3)-14/(2sqrt3-sqrt(-2)) in the form A+iB.

Simplify (2+sqrt3)/(sqrt5+sqrt2)

Simplify (sqrt(3)+2)(sqrt(3)-2)

Simplify: sqrt(3-2sqrt(2))

Simplify (sqrt3+2)^2-(sqrt3-2)^2

Simplify: (3sqrt(2)-2sqrt(2))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2)) (ii) (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

(3sqrt(2)-2sqrt(3))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2))

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

Simplify: (1)/(sqrt(11-2sqrt(30)))*(3)/(sqrt(7-2sqrt(10)))(4)/(sqrt(8+4sqrt(3)))