Find the square root of
(a) `-8-6i`
(b) `(x^2)/(y^2)+ (y^2)/(x^2)-(1)/(i) ((x)/(y)-(y)/(x))-(9)/(4)`.
Find the square root of
(a) `-8-6i`
(b) `(x^2)/(y^2)+ (y^2)/(x^2)-(1)/(i) ((x)/(y)-(y)/(x))-(9)/(4)`.
(a) `-8-6i`
(b) `(x^2)/(y^2)+ (y^2)/(x^2)-(1)/(i) ((x)/(y)-(y)/(x))-(9)/(4)`.
Text Solution
AI Generated Solution
The correct Answer is:
To find the square root of the given complex numbers, we will solve each part step by step.
### Part (a): Find the square root of `-8 - 6i`
1. **Express the complex number in the form of \( a + bi \)**:
We have \( z = -8 - 6i \).
2. **Assume the square root is in the form \( x + yi \)**:
Let \( w = x + yi \), where \( x \) and \( y \) are real numbers.
3. **Square the assumed square root**:
\[
w^2 = (x + yi)^2 = x^2 + 2xyi - y^2 = (x^2 - y^2) + (2xy)i
\]
4. **Set the real and imaginary parts equal to those of \( z \)**:
\[
x^2 - y^2 = -8 \quad \text{(1)}
\]
\[
2xy = -6 \quad \text{(2)}
\]
5. **From equation (2), express \( y \) in terms of \( x \)**:
\[
y = \frac{-6}{2x} = \frac{-3}{x} \quad \text{(3)}
\]
6. **Substitute (3) into (1)**:
\[
x^2 - \left(\frac{-3}{x}\right)^2 = -8
\]
\[
x^2 - \frac{9}{x^2} = -8
\]
7. **Multiply through by \( x^2 \) to eliminate the fraction**:
\[
x^4 + 8x^2 - 9 = 0
\]
8. **Let \( u = x^2 \)**:
\[
u^2 + 8u - 9 = 0
\]
9. **Use the quadratic formula to solve for \( u \)**:
\[
u = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 1 \cdot (-9)}}{2 \cdot 1} = \frac{-8 \pm \sqrt{64 + 36}}{2} = \frac{-8 \pm 10}{2}
\]
\[
u = 1 \quad \text{or} \quad u = -9 \quad \text{(discard negative)}
\]
10. **Find \( x \)**:
\[
x^2 = 1 \implies x = 1 \quad \text{or} \quad x = -1
\]
11. **Find \( y \) using (3)**:
- If \( x = 1 \):
\[
y = \frac{-3}{1} = -3
\]
- If \( x = -1 \):
\[
y = \frac{-3}{-1} = 3
\]
12. **Thus, the square roots are**:
\[
\sqrt{-8 - 6i} = 1 - 3i \quad \text{or} \quad -1 + 3i
\]
### Part (b): Find the square root of \( \frac{x^2}{y^2} + \frac{y^2}{x^2} - \frac{1}{i} \left( \frac{x}{y} - \frac{y}{x} \right) - \frac{9}{4} \)
1. **Simplify the expression**:
\[
\frac{x^2}{y^2} + \frac{y^2}{x^2} - \frac{1}{i} \left( \frac{x}{y} - \frac{y}{x} \right) - \frac{9}{4}
\]
2. **Rewrite \( \frac{1}{i} \)**:
\[
\frac{1}{i} = -i \quad \text{(since \( i \cdot -i = 1 \))}
\]
Thus,
\[
-\frac{1}{i} \left( \frac{x}{y} - \frac{y}{x} \right) = i \left( \frac{x}{y} - \frac{y}{x} \right)
\]
3. **Combine terms**:
\[
\frac{x^2}{y^2} + \frac{y^2}{x^2} + i \left( \frac{x}{y} - \frac{y}{x} \right) - \frac{9}{4}
\]
4. **Let \( a = \frac{x^2}{y^2} + \frac{y^2}{x^2} - \frac{9}{4} \) and \( b = \frac{x}{y} - \frac{y}{x} \)**:
\[
z = a + ib
\]
5. **Find the square root**:
Assume \( w = u + iv \):
\[
w^2 = (u + iv)^2 = u^2 - v^2 + 2uvi
\]
6. **Set real and imaginary parts equal**:
\[
u^2 - v^2 = a \quad \text{(4)}
\]
\[
2uv = b \quad \text{(5)}
\]
7. **From (5), express \( v \) in terms of \( u \)**:
\[
v = \frac{b}{2u} \quad \text{(6)}
\]
8. **Substitute (6) into (4)**:
\[
u^2 - \left(\frac{b}{2u}\right)^2 = a
\]
\[
u^2 - \frac{b^2}{4u^2} = a
\]
9. **Multiply through by \( 4u^2 \)**:
\[
4u^4 - b^2 = 4au^2
\]
\[
4u^4 - 4au^2 - b^2 = 0
\]
10. **Let \( v = u^2 \)**:
\[
4v^2 - 4av - b^2 = 0
\]
11. **Use the quadratic formula**:
\[
v = \frac{4a \pm \sqrt{(4a)^2 + 16b^2}}{8} = \frac{a \pm \sqrt{a^2 + 4b^2}}{2}
\]
12. **Find \( u \) and \( v \)**:
\[
u = \sqrt{v} \quad \text{and} \quad v = \frac{b}{2u}
\]
13. **Thus, the square root is**:
\[
\sqrt{\frac{x^2}{y^2} + \frac{y^2}{x^2} - \frac{1}{i} \left( \frac{x}{y} - \frac{y}{x} \right) - \frac{9}{4}} = \pm \left( u + iv \right)
\]
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Find the square root of the following: (x^(2))/(y^(2))+(y^(2))/(x^(2))-(1)/(i)((x)/(y)-(y)/(x))-(9)/(4)
Find the square root of y+sqrt(y^(2)-x^(2))x^(2)>y^(2)
Find the square root of x^2/y^2+y^2/x^2+1/(2i)(x/y+y/x)+31/16 .
Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))
If x=4 and y=1, find the value of ((x)/(2)-(y)/(3))((x^(2))/(4)+(xy)/(6)+(y^(2))/(9)) .
Find the value of x and y I. 18x^(2)-9x+1=0 II. 12y^(2)-y-1=0
Find the ordered pair (x,y) for which x^(2)-y^(2)-i(2x+y)=2i
If x be real then find the range of the following rational expressions (i) y=(x^(2)+x+1)/(x^(2)+1) (ii) y=(x^(2)-2x+9)/(x^(2)+2x+9)
Find the area of the region {(x,y):y^(2)<=4x,4x^(2)+4y^(2)<=9}
Find the area of the region {(x,y):y^(2)<=4x,4x^(2)+4y^(2)<=9}