Home
Class 12
MATHS
If alpha,beta are the roots of the equat...

If `alpha,beta` are the roots of the equation `x^2-2x+4=0`, find `alpha^(n)+beta^(n)` for
(a) `n=3k, k in N`
(b) `n ne 3k, k in N `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \alpha^n + \beta^n \) where \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 - 2x + 4 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) The roots of the quadratic equation \( ax^2 + bx + c = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation \( x^2 - 2x + 4 = 0 \): - \( a = 1 \) - \( b = -2 \) - \( c = 4 \) Substituting these values into the formula gives: \[ x = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 - 16}}{2} = \frac{2 \pm \sqrt{-12}}{2} \] This simplifies to: \[ x = \frac{2 \pm 2i\sqrt{3}}{2} = 1 \pm i\sqrt{3} \] Thus, we have: \[ \alpha = 1 + i\sqrt{3}, \quad \beta = 1 - i\sqrt{3} \] ### Step 2: Express \( \alpha \) and \( \beta \) in polar form Next, we convert \( \alpha \) and \( \beta \) into polar form. The modulus \( r \) and argument \( \theta \) can be calculated as follows: - Modulus: \[ r = \sqrt{(1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] - Argument: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} \] Thus, we can express: \[ \alpha = 2 \left( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \right), \quad \beta = 2 \left( \cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right) \right) \] ### Step 3: Use De Moivre's Theorem Using De Moivre's Theorem, we can find \( \alpha^n \) and \( \beta^n \): \[ \alpha^n = 2^n \left( \cos\frac{n\pi}{3} + i\sin\frac{n\pi}{3} \right) \] \[ \beta^n = 2^n \left( \cos\left(-\frac{n\pi}{3}\right) + i\sin\left(-\frac{n\pi}{3}\right) \right) \] ### Step 4: Calculate \( \alpha^n + \beta^n \) Now, we can add \( \alpha^n \) and \( \beta^n \): \[ \alpha^n + \beta^n = 2^n \left( \cos\frac{n\pi}{3} + i\sin\frac{n\pi}{3} \right) + 2^n \left( \cos\left(-\frac{n\pi}{3}\right) + i\sin\left(-\frac{n\pi}{3}\right) \right) \] Since \( \cos(-x) = \cos(x) \) and \( \sin(-x) = -\sin(x) \): \[ \alpha^n + \beta^n = 2^n \left( 2\cos\frac{n\pi}{3} \right) = 2^{n+1} \cos\frac{n\pi}{3} \] ### Step 5: Analyze for \( n = 3k \) and \( n \neq 3k \) (a) **For \( n = 3k \)**: \[ \alpha^{3k} + \beta^{3k} = 2^{3k + 1} \cos\left(\frac{3k\pi}{3}\right) = 2^{3k + 1} \cos(k\pi) \] Since \( \cos(k\pi) = (-1)^k \): \[ \alpha^{3k} + \beta^{3k} = 2^{3k + 1} (-1)^k \] (b) **For \( n \neq 3k \)**: \[ \alpha^n + \beta^n = 2^{n + 1} \cos\left(\frac{n\pi}{3}\right) \] ### Final Answers: - (a) \( \alpha^{3k} + \beta^{3k} = 2^{3k + 1} (-1)^k \) - (b) \( \alpha^n + \beta^n = 2^{n + 1} \cos\left(\frac{n\pi}{3}\right) \)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

If alpha and beta are the roots of the equation x^(2)-2x+4=0, prove that alpha^(n)+beta^(n)=2^(n+1)cos(n(pi)/(3))

If alpha,beta are the roots of x^(2)-2x+4=0 then alpha^(n)+beta^(n) is

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

Let alpha and beta be the roots of the equation 5x^2 + 6x-2 =0 if S_(n ) = alpha ^(n) + beta^(n) , n= 1,2,3 ..,, then :