Home
Class 12
MATHS
Find the complex number z with maximum a...

Find the complex number z with maximum and minimum possible values of `|z|` satisfying
(a) `|z + (1)/(z) | =1`.
(b) `|z+ (4)/(z)| =3`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the complex number \( z \) with maximum and minimum possible values of \( |z| \) satisfying the given conditions, we will solve each part step by step. ### Part (a): \( |z + \frac{1}{z}| = 1 \) 1. **Start with the given equation:** \[ |z + \frac{1}{z}| = 1 \] 2. **Use the triangle inequality:** \[ |z + \frac{1}{z}| \leq |z| + \left|\frac{1}{z}\right| = |z| + \frac{1}{|z|} \] Thus, we have: \[ 1 \leq |z| + \frac{1}{|z|} \] 3. **Let \( r = |z| \):** \[ 1 \leq r + \frac{1}{r} \] 4. **Rearranging gives:** \[ r + \frac{1}{r} \geq 1 \] 5. **Multiply through by \( r \) (assuming \( r > 0 \)):** \[ r^2 - r + 1 \geq 0 \] 6. **Find the roots of the equation \( r^2 - r + 1 = 0 \):** \[ D = (-1)^2 - 4 \cdot 1 \cdot 1 = 1 - 4 = -3 \] Since the discriminant is negative, the quadratic has no real roots, meaning \( r^2 - r + 1 \) is always positive. 7. **Now, consider the equality case:** \[ |z + \frac{1}{z}| = |z| + \left|\frac{1}{z}\right| \implies z \text{ and } \frac{1}{z} \text{ are in the same direction.} \] 8. **Set \( z = re^{i\theta} \):** \[ |re^{i\theta} + \frac{1}{re^{i\theta}}| = 1 \] This simplifies to: \[ |r + \frac{1}{r}| = 1 \] 9. **Solve the equation \( r + \frac{1}{r} = 1 \):** \[ r^2 - r + 1 = 0 \text{ (already shown has no real roots)} \] 10. **Now consider the critical points:** \[ r + \frac{1}{r} = 1 \implies r^2 - r + 1 = 0 \text{ has no solutions.} \] Thus, we analyze the inequality: \[ r + \frac{1}{r} \geq 2 \implies r \geq 1 \] 11. **Minimum and maximum values:** - Minimum value of \( |z| = 1 - \frac{\sqrt{5}}{2} \) - Maximum value of \( |z| = 1 + \frac{\sqrt{5}}{2} \) ### Part (b): \( |z + \frac{4}{z}| = 3 \) 1. **Start with the given equation:** \[ |z + \frac{4}{z}| = 3 \] 2. **Use the triangle inequality:** \[ |z + \frac{4}{z}| \leq |z| + \left|\frac{4}{z}\right| = |z| + \frac{4}{|z|} \] Thus, we have: \[ 3 \leq |z| + \frac{4}{|z|} \] 3. **Let \( r = |z| \):** \[ 3 \leq r + \frac{4}{r} \] 4. **Rearranging gives:** \[ r + \frac{4}{r} \geq 3 \] 5. **Multiply through by \( r \) (assuming \( r > 0 \)):** \[ r^2 - 3r + 4 \geq 0 \] 6. **Find the roots of the equation \( r^2 - 3r + 4 = 0 \):** \[ D = (-3)^2 - 4 \cdot 1 \cdot 4 = 9 - 16 = -7 \] Since the discriminant is negative, the quadratic has no real roots, meaning \( r^2 - 3r + 4 \) is always positive. 7. **Now consider the equality case:** \[ |z + \frac{4}{z}| = |z| + \left|\frac{4}{z}\right| \implies z \text{ and } \frac{4}{z} \text{ are in the same direction.} \] 8. **Set \( z = re^{i\theta} \):** \[ |re^{i\theta} + \frac{4}{re^{i\theta}}| = 3 \] This simplifies to: \[ |r + \frac{4}{r}| = 3 \] 9. **Solve the equation \( r + \frac{4}{r} = 3 \):** \[ r^2 - 3r + 4 = 0 \text{ (already shown has no real roots)} \] 10. **Now consider the critical points:** \[ r + \frac{4}{r} = 3 \implies r^2 - 3r + 4 = 0 \text{ has no solutions.} \] Thus, we analyze the inequality: \[ r + \frac{4}{r} \geq 3 \implies r \geq 1 \] 11. **Minimum and maximum values:** - Minimum value of \( |z| = 1 \) - Maximum value of \( |z| = 4 \) ### Summary of Results: - For part (a): - Minimum value of \( |z| = 1 - \frac{\sqrt{5}}{2} \) - Maximum value of \( |z| = 1 + \frac{\sqrt{5}}{2} \) - For part (b): - Minimum value of \( |z| = 1 \) - Maximum value of \( |z| = 4 \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - I|50 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - II|22 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level - I|20 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of |z| satisfying |z+(1)/(z)|=2

If |z+(4)/(z)|=2, find the maximum and minimum values of |z|

If z is a complex number, then the minimum value of |z|+|z-1| is -

Let z be a complex number such that |z| = 2, then maximum possible value of |z + (2)/(z)| is

The complex number z satisfying z+|z|=1+zi then the value of |z|^(2) is

If z is a complex number,then find the minimum value of |z|+|z-1|+|2z-3|