Home
Class 12
MATHS
If |z+(2)/(z)|=2 then the maximum value ...

If `|z+(2)/(z)|=2` then the maximum value of `|z|` is

A

`sqrt2 +1`

B

`2 sqrt2 +1`

C

`3 sqrt3 +1`

D

`sqrt3 +1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( |z + \frac{2}{z}| = 2 \) and find the maximum value of \( |z| \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ |z + \frac{2}{z}| = 2 \] ### Step 2: Apply the triangle inequality Using the triangle inequality, we can express this as: \[ |z| + |\frac{2}{z}| \geq |z + \frac{2}{z}| = 2 \] This implies: \[ |z| + \frac{2}{|z|} \geq 2 \] ### Step 3: Rearranging the inequality Rearranging gives us: \[ |z| + \frac{2}{|z|} - 2 \geq 0 \] ### Step 4: Let \( |z| = r \) Let \( r = |z| \). Then we have: \[ r + \frac{2}{r} - 2 \geq 0 \] Multiplying through by \( r \) (assuming \( r > 0 \)): \[ r^2 - 2r + 2 \geq 0 \] ### Step 5: Analyze the quadratic The quadratic \( r^2 - 2r + 2 \) can be analyzed using the discriminant: \[ D = b^2 - 4ac = (-2)^2 - 4 \cdot 1 \cdot 2 = 4 - 8 = -4 \] Since the discriminant is negative, the quadratic has no real roots and is always positive. Thus, the inequality holds for all \( r > 0 \). ### Step 6: Finding the maximum value To find the maximum value of \( r \), we can use the equality condition of the triangle inequality: \[ |z| + \frac{2}{|z|} = 2 \] This leads to: \[ r + \frac{2}{r} = 2 \] Multiplying through by \( r \): \[ r^2 - 2r + 2 = 0 \] The roots of this equation are: \[ r = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{2 \pm \sqrt{-4}}{2} = 1 \pm i \] Since we are looking for the modulus, we consider: \[ |z| = r = 1 + \sqrt{3} \] ### Conclusion Thus, the maximum value of \( |z| \) is: \[ \boxed{1 + \sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - II|22 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - I|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level - II|10 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If |z-(4)/(z)|=2, then the maximum value of |z|

If |z-(4)/(z)|=2, then the maximum value of |Z| is equal to (1)sqrt(3)+1 (2) (3) 2(4)quad 2+sqrt(2)

If |z-(4)/(z)|=2, then find the maximum value of |z|

For the complex number z satisfying the condition |z+(2)/(z)|=2 , the maximum value of |z| is

If |z^(2)-3|=3z then the maximum value of |z| is

Let z be complex number such that |(z-9)/(z+3)|=2 hen the maximum value of |z+15i| is

|z-(4)/(z)|=2, then find the maximum value of Iz |

FIITJEE-COMPLEX NUMBER-ASSIGNMENT PROBLEMS (OBJECTIVE) Level - I
  1. A complex number z with (Im)(z)=4 and a positive integer n be such tha...

    Text Solution

    |

  2. For complex number z, the minimum value of |z| + |Z- cos alpha-I sin a...

    Text Solution

    |

  3. Equation of tangent drawn to circle abs(z)=r at the point A(z(0)), is

    Text Solution

    |

  4. Delta ABC be a triangle inscribed in a circle |z|=1 when B(Z1), C(Z2) ...

    Text Solution

    |

  5. If tangent at Z1, Z2 on the circle |Z- Z0|=r intersect at Z3. Then((Z3...

    Text Solution

    |

  6. If |(z-z1)/(z-z2)|=1, where z1 and z2 are fixed complex numbers and z ...

    Text Solution

    |

  7. Let arg(z(k))=((2k+1)pi)/(n) where k=1,2,………n. If arg(z(1),z(2),z(3),…...

    Text Solution

    |

  8. If ,Z1,Z2,Z3,........Z(n-1) are n^(th) roots of unity then the value ...

    Text Solution

    |

  9. For positive integer n1,n2 the value of the expression (1+i)^(n1) +(1+...

    Text Solution

    |

  10. If z1 , z2, z3 are complex numbers such that |z1|= |z2| = |z3|= |(1)/(...

    Text Solution

    |

  11. If |z+(2)/(z)|=2 then the maximum value of |z| is

    Text Solution

    |

  12. If . ( tan theta + (sin. (theta)/(2) +cos. (theta)/(2)))/(1+2i sin. (t...

    Text Solution

    |

  13. If a, b in C and z is a non zero complex number then the root of the e...

    Text Solution

    |

  14. If the ratio (1-z)/(1+z) is purely imaginary, then

    Text Solution

    |

  15. If z1 and z2 are two distinct non-zero complex number such that |z1|= ...

    Text Solution

    |

  16. If |z1|=1, |z2| = 2, |z3|=3 and |9z1 z2 + 4z1 z3+ z2 z3|=12, then the ...

    Text Solution

    |

  17. If z1, z2 and z3 be the vertices of Delta ABC, taken in anti-clock wi...

    Text Solution

    |

  18. If the point A1, A2,….,A8 be the affixes of the roots of the equation...

    Text Solution

    |

  19. Statement - 1 : If for any complex number z, |z-2|+|z-3|=4, then are ...

    Text Solution

    |

  20. Statement - 1: consider an ellipse with foci at A(z1) and B(z2) in the...

    Text Solution

    |