Home
Class 12
MATHS
If z1 and z2 are two distinct non-zero c...

If `z_1 and z_2` are two distinct non-zero complex number such that `|z_1|= |z_2|`, then `(z_1+ z_2)/(z_1 - z_2)` is always

A

purely real

B

purely imaginary

C

equal to zero

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression \(\frac{z_1 + z_2}{z_1 - z_2}\) given that \(z_1\) and \(z_2\) are distinct non-zero complex numbers with equal magnitudes, i.e., \(|z_1| = |z_2|\). ### Step-by-Step Solution: 1. **Express \(z_1\) and \(z_2\) in terms of their real and imaginary parts:** Let \(z_1 = x_1 + iy_1\) and \(z_2 = x_2 + iy_2\), where \(x_1, y_1, x_2, y_2\) are real numbers. 2. **Use the condition \(|z_1| = |z_2|\):** The magnitudes of \(z_1\) and \(z_2\) can be expressed as: \[ |z_1| = \sqrt{x_1^2 + y_1^2}, \quad |z_2| = \sqrt{x_2^2 + y_2^2} \] Since \(|z_1| = |z_2|\), we have: \[ x_1^2 + y_1^2 = x_2^2 + y_2^2 \] 3. **Calculate \(z_1 + z_2\) and \(z_1 - z_2\):** \[ z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2) \] \[ z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2) \] 4. **Form the expression \(\frac{z_1 + z_2}{z_1 - z_2}\):** \[ \frac{z_1 + z_2}{z_1 - z_2} = \frac{(x_1 + x_2) + i(y_1 + y_2)}{(x_1 - x_2) + i(y_1 - y_2)} \] 5. **Rationalize the denominator:** Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{((x_1 + x_2) + i(y_1 + y_2))((x_1 - x_2) - i(y_1 - y_2))}{(x_1 - x_2)^2 + (y_1 - y_2)^2} \] 6. **Expand the numerator:** Using the distributive property: \[ = \frac{(x_1 + x_2)(x_1 - x_2) - i(y_1 + y_2)(y_1 - y_2) + i(y_1 + y_2)(x_1 - x_2) + (x_1 + x_2)(-i(y_1 - y_2))}{(x_1 - x_2)^2 + (y_1 - y_2)^2} \] 7. **Combine real and imaginary parts:** The real part will be: \[ \text{Real part} = \frac{(x_1 + x_2)(x_1 - x_2) + (y_1 + y_2)(y_1 - y_2)}{(x_1 - x_2)^2 + (y_1 - y_2)^2} \] The imaginary part will be: \[ \text{Imaginary part} = \frac{(y_1 + y_2)(x_1 - x_2) - (x_1 + x_2)(y_1 - y_2)}{(x_1 - x_2)^2 + (y_1 - y_2)^2} \] 8. **Show that the real part cancels out:** Since \(x_1^2 + y_1^2 = x_2^2 + y_2^2\), the real part simplifies to zero, leaving only the imaginary part. 9. **Conclusion:** Therefore, \(\frac{z_1 + z_2}{z_1 - z_2}\) is purely imaginary. ### Final Answer: The expression \(\frac{z_1 + z_2}{z_1 - z_2}\) is always purely imaginary.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - II|22 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - I|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level - II|10 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If z_1 and z_2 are two nonzero complex numbers such that |z_1-z_2|=|z_1|-|z_2| then arg z_1 -arg z_2 is equal to

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)|+|z_(1)-z_(2)| then

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

Let Z_1 and Z_2 are two non-zero complex number such that |Z_1+Z_2|=|Z_1|=|Z_2| , then Z_1/Z_2 may be :

If z_(1) and z_(2), are two non-zero complex numbers such tha |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then arg(z_(1))-arg(z_(2)) is equal to

If z_1 and z_2 are two non zero complex number such that |z_1+z_2|=|z_1|+|z_2| then arg z_1-argz_2 is equal to (A) - pi/2 (B) 0 (C) -pi (D) pi/2

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1, then

FIITJEE-COMPLEX NUMBER-ASSIGNMENT PROBLEMS (OBJECTIVE) Level - I
  1. A complex number z with (Im)(z)=4 and a positive integer n be such tha...

    Text Solution

    |

  2. For complex number z, the minimum value of |z| + |Z- cos alpha-I sin a...

    Text Solution

    |

  3. Equation of tangent drawn to circle abs(z)=r at the point A(z(0)), is

    Text Solution

    |

  4. Delta ABC be a triangle inscribed in a circle |z|=1 when B(Z1), C(Z2) ...

    Text Solution

    |

  5. If tangent at Z1, Z2 on the circle |Z- Z0|=r intersect at Z3. Then((Z3...

    Text Solution

    |

  6. If |(z-z1)/(z-z2)|=1, where z1 and z2 are fixed complex numbers and z ...

    Text Solution

    |

  7. Let arg(z(k))=((2k+1)pi)/(n) where k=1,2,………n. If arg(z(1),z(2),z(3),…...

    Text Solution

    |

  8. If ,Z1,Z2,Z3,........Z(n-1) are n^(th) roots of unity then the value ...

    Text Solution

    |

  9. For positive integer n1,n2 the value of the expression (1+i)^(n1) +(1+...

    Text Solution

    |

  10. If z1 , z2, z3 are complex numbers such that |z1|= |z2| = |z3|= |(1)/(...

    Text Solution

    |

  11. If |z+(2)/(z)|=2 then the maximum value of |z| is

    Text Solution

    |

  12. If . ( tan theta + (sin. (theta)/(2) +cos. (theta)/(2)))/(1+2i sin. (t...

    Text Solution

    |

  13. If a, b in C and z is a non zero complex number then the root of the e...

    Text Solution

    |

  14. If the ratio (1-z)/(1+z) is purely imaginary, then

    Text Solution

    |

  15. If z1 and z2 are two distinct non-zero complex number such that |z1|= ...

    Text Solution

    |

  16. If |z1|=1, |z2| = 2, |z3|=3 and |9z1 z2 + 4z1 z3+ z2 z3|=12, then the ...

    Text Solution

    |

  17. If z1, z2 and z3 be the vertices of Delta ABC, taken in anti-clock wi...

    Text Solution

    |

  18. If the point A1, A2,….,A8 be the affixes of the roots of the equation...

    Text Solution

    |

  19. Statement - 1 : If for any complex number z, |z-2|+|z-3|=4, then are ...

    Text Solution

    |

  20. Statement - 1: consider an ellipse with foci at A(z1) and B(z2) in the...

    Text Solution

    |