Home
Class 12
MATHS
If z=-2 + 2 sqrt3i then z^(2n) + z^(n) +...

If `z=-2 + 2 sqrt3i` then `z^(2n) + z^(n) + 2^(4n)` may be equal to

A

`2^(2n)`

B

`0`

C

`3. 2^(4n)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( z^{2n} + z^n + 2^{4n} \) where \( z = -2 + 2\sqrt{3}i \). ### Step 1: Express \( z \) in polar form Given \( z = -2 + 2\sqrt{3}i \), we can express it in polar form. 1. Calculate the modulus \( |z| \): \[ |z| = \sqrt{(-2)^2 + (2\sqrt{3})^2} = \sqrt{4 + 12} = \sqrt{16} = 4 \] 2. Calculate the argument \( \theta \): \[ \tan(\theta) = \frac{2\sqrt{3}}{-2} = -\sqrt{3} \implies \theta = \frac{2\pi}{3} \text{ (since it's in the second quadrant)} \] Thus, we can write: \[ z = 4 \left( \cos\left(\frac{2\pi}{3}\right) + i \sin\left(\frac{2\pi}{3}\right) \right) = 4 e^{i \frac{2\pi}{3}} \] ### Step 2: Calculate \( z^{2n} \) and \( z^n \) Using the polar form: \[ z^{2n} = (4 e^{i \frac{2\pi}{3}})^{2n} = 4^{2n} e^{i \frac{4\pi n}{3}} = 16^n e^{i \frac{4\pi n}{3}} \] \[ z^n = (4 e^{i \frac{2\pi}{3}})^{n} = 4^n e^{i \frac{2\pi n}{3}} = 16^{n/2} e^{i \frac{2\pi n}{3}} \] ### Step 3: Substitute into the expression Now substitute \( z^{2n} \), \( z^n \), and \( 2^{4n} \) into the expression: \[ z^{2n} + z^n + 2^{4n} = 16^n e^{i \frac{4\pi n}{3}} + 4^n e^{i \frac{2\pi n}{3}} + 2^{4n} \] ### Step 4: Factor out \( 2^{4n} \) Notice that \( 16^n = (2^4)^n = 2^{4n} \) and \( 4^n = (2^2)^n = 2^{2n} \): \[ = 2^{4n} \left( e^{i \frac{4\pi n}{3}} + e^{i \frac{2\pi n}{3}} + 1 \right) \] ### Step 5: Evaluate the expression inside the parentheses The expression \( e^{i \frac{4\pi n}{3}} + e^{i \frac{2\pi n}{3}} + 1 \) can be simplified using the roots of unity: - The three terms represent the cube roots of unity, which sum to zero. Thus, we have: \[ e^{i \frac{4\pi n}{3}} + e^{i \frac{2\pi n}{3}} + 1 = 0 \] ### Final Step: Conclusion Substituting back, we find: \[ z^{2n} + z^n + 2^{4n} = 2^{4n} \cdot 0 = 0 \] ### Answer The expression \( z^{2n} + z^n + 2^{4n} \) may be equal to **0**.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - I|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - II|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - I|50 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^(n)+2^(4n) is equal to

If n is a positive integer but not a multiple of 3 and z=-1+i sqrt(3), then (z^(2n)+2^(n)z^(n)+2^(2n)) is equal to

If z + (1)/(z) = 2 cos theta, z in "C then z"^(2n) - 2z^(n) cos (n theta) is equal to

If i=sqrt(-1) , then {i^(n)+i^(-n), n in Z} is equal to

If z=3-4i then z^(4)-3z^(3)+3z^(2)+99z-95 is equal to

If n in Z , then (2^(n))/(1+i)^(2n)+(1+i)^(2n)/(2^(n)) is equal to

If z = i(i + sqrt(2)) , then value of z^(4) + 4z^(3) + 6z^(2) + 4z is

If z=sqrt(2i), then z is equal to

FIITJEE-COMPLEX NUMBER-ASSIGNMENT PROBLEMS (OBJECTIVE) Level - II
  1. If |z1| = |z2| and "arg" (z1) + "arg" (z2) = pi//2,, then

    Text Solution

    |

  2. The point represented by the complex number 2+i rotated about the orig...

    Text Solution

    |

  3. If z=-2 + 2 sqrt3i then z^(2n) + z^(n) + 2^(4n) may be equal to

    Text Solution

    |

  4. The complex number satisfying |z+bar(z)|+|z - bar(z)|=2 and |z+i|+|z-i...

    Text Solution

    |

  5. If |(z1 z- z2)/(z1 z+z2)|=k, (z1 , z2 ne 0) then

    Text Solution

    |

  6. If z1 + a1 + ib1 and z2 = a2 + ib2 are complex such that |z1| = 1, |z2...

    Text Solution

    |

  7. If from a point P representing the complex number z1 on the curve |z...

    Text Solution

    |

  8. If |z1 + z2|=|z1| + |z2|, then one of the value of arguments of the co...

    Text Solution

    |

  9. If the complex numbers z1, z2, z3, z4 taken in that order, represent t...

    Text Solution

    |

  10. One vertex of the triangle of maximum area that can be inscribed in th...

    Text Solution

    |

  11. If x, y, a, b are real numbers such that (x+iy)^(1//5)=a + ib and p = ...

    Text Solution

    |

  12. Let z1, z2 be two complex numbers represented by points on the circle...

    Text Solution

    |

  13. If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(...

    Text Solution

    |

  14. The complex numbers satisfying |z+2|+|z-2|=8 and |z+6|+|z-6|=12

    Text Solution

    |

  15. If Z= (1+ xi)^(n) be a complex number such that its real and imaginary...

    Text Solution

    |

  16. If z(1),z(2),z(3),…,z(n-1) are the roots of the equation z^(n-1)+z^(n-...

    Text Solution

    |

  17. If ((1+i) z= (1-i))bar(z), then

    Text Solution

    |

  18. Let two distinct complex numbers z1 and z2 both satisfy the equation ...

    Text Solution

    |

  19. If z1 + z2 + z3 = A, z1 + z(2)omega+ z(3)omega^(2)= B, z1 + z(2) omeg...

    Text Solution

    |

  20. A, B, C are the points representing the complex numbers z1, z2, z3 res...

    Text Solution

    |