Home
Class 12
MATHS
If x, y, a, b are real numbers such that...

If `x, y, a, b` are real numbers such that `(x+iy)^(1//5)=a + ib and p = (x)/(a) - (y)/(b)`, then

A

`a-b` is factor of p

B

`a+b` is a factor of p

C

`a+ib` is a factor of p

D

`a-ib` is a factor of p

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ (x + iy)^{1/5} = a + ib \] We can raise both sides to the power of 5: \[ x + iy = (a + ib)^5 \] Next, we will expand the right-hand side using the binomial theorem: \[ (a + ib)^5 = \sum_{k=0}^{5} \binom{5}{k} a^{5-k} (ib)^k \] This expands to: \[ = a^5 + 5a^4(ib) + 10a^3(ib)^2 + 10a^2(ib)^3 + 5a(ib)^4 + (ib)^5 \] Now, substituting \(i^2 = -1\), \(i^3 = -i\), \(i^4 = 1\), and \(i^5 = i\): \[ = a^5 + 5a^4(ib) + 10a^3(-b^2) + 10a^2(-ib^3) + 5a(b^4) + (ib^5) \] This simplifies to: \[ = a^5 - 10a^3b^2 + 5ab^4 + i(5a^4b - 10a^2b^3 + b^5) \] Now, we can equate the real and imaginary parts: 1. Real part: \[ x = a^5 - 10a^3b^2 + 5ab^4 \] 2. Imaginary part: \[ y = 5a^4b - 10a^2b^3 + b^5 \] Next, we need to find \(p\) defined as: \[ p = \frac{x}{a} - \frac{y}{b} \] Substituting the expressions for \(x\) and \(y\): \[ p = \frac{a^5 - 10a^3b^2 + 5ab^4}{a} - \frac{5a^4b - 10a^2b^3 + b^5}{b} \] This simplifies to: \[ p = a^4 - 10a^2b^2 + 5b^3 - (5a^3 - 10ab^2 + \frac{b^5}{b}) \] Combining the terms, we get: \[ p = a^4 - 10a^2b^2 + 5b^3 - 5a^3 + 10ab^2 - b^4 \] Now, we can factor \(p\). We notice that: \[ p = 4(b^2 - a^2)(b^2 + a^2) \] Thus, we can express \(p\) as: \[ p = 4(b^2 - a^2)(b^2 + a^2) \] Finally, we can factor \(b^2 - a^2\) as \((b - a)(b + a)\): \[ p = 4(b - a)(b + a)(b^2 + a^2) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - I|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - II|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - I|50 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If (x+iy)=a+ib then (x)/(a)+(y)/(b)=

if (x+iy)^((1)/(3))=a+ib then ((x)/(a))+((y)/(b)) equals to

If x, y and b are real number and x lt y, b lt 0 , then

If (x+iy)^((1)/(3))=a+ib where x,y,a,b are real numbers such that (x)/(a)-(y)/(b)=k(a^(2)+b^(2)) then the value of k is

If a, b, x, y are positive natural numbers such that (1)/(x) + (1)/(y) = 1 then prove that (a^(x))/(x) + (b^(y))/(y) ge ab .

if a,b x,y are positive natural number such that (1)/(x)+(1)/(y)=1 then (a^(x))/(x)+(a^(y))/(y)=

If (x+iy)^(1/3)=a+ib, then (x)/(a)=(y)/(b)=0b1c.-1d .none of these

Given that x , y a n d b are real numbers and x >0 then x/b y/b d. x/bgeqy/b

FIITJEE-COMPLEX NUMBER-ASSIGNMENT PROBLEMS (OBJECTIVE) Level - II
  1. If z=-2 + 2 sqrt3i then z^(2n) + z^(n) + 2^(4n) may be equal to

    Text Solution

    |

  2. The complex number satisfying |z+bar(z)|+|z - bar(z)|=2 and |z+i|+|z-i...

    Text Solution

    |

  3. If |(z1 z- z2)/(z1 z+z2)|=k, (z1 , z2 ne 0) then

    Text Solution

    |

  4. If z1 + a1 + ib1 and z2 = a2 + ib2 are complex such that |z1| = 1, |z2...

    Text Solution

    |

  5. If from a point P representing the complex number z1 on the curve |z...

    Text Solution

    |

  6. If |z1 + z2|=|z1| + |z2|, then one of the value of arguments of the co...

    Text Solution

    |

  7. If the complex numbers z1, z2, z3, z4 taken in that order, represent t...

    Text Solution

    |

  8. One vertex of the triangle of maximum area that can be inscribed in th...

    Text Solution

    |

  9. If x, y, a, b are real numbers such that (x+iy)^(1//5)=a + ib and p = ...

    Text Solution

    |

  10. Let z1, z2 be two complex numbers represented by points on the circle...

    Text Solution

    |

  11. If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(...

    Text Solution

    |

  12. The complex numbers satisfying |z+2|+|z-2|=8 and |z+6|+|z-6|=12

    Text Solution

    |

  13. If Z= (1+ xi)^(n) be a complex number such that its real and imaginary...

    Text Solution

    |

  14. If z(1),z(2),z(3),…,z(n-1) are the roots of the equation z^(n-1)+z^(n-...

    Text Solution

    |

  15. If ((1+i) z= (1-i))bar(z), then

    Text Solution

    |

  16. Let two distinct complex numbers z1 and z2 both satisfy the equation ...

    Text Solution

    |

  17. If z1 + z2 + z3 = A, z1 + z(2)omega+ z(3)omega^(2)= B, z1 + z(2) omeg...

    Text Solution

    |

  18. A, B, C are the points representing the complex numbers z1, z2, z3 res...

    Text Solution

    |

  19. If 1, omega, omega^2 ,…..,omega^(n-1) are the nth roots of unity, then...

    Text Solution

    |

  20. If omega ne 1 is a cube root of unity , then find the value of |{:(...

    Text Solution

    |