Home
Class 12
MATHS
If z1 + z2 + z3 = A, z1 + z(2)omega+ z(...

If `z_1 + z_2 + z_3 = A, z_1 + z_(2)omega+ z_(3)omega^(2)= B, z_1 + z_(2) omega^(2) + z_(3) omega=C` where `1, omega, omega^2` are the cube roots of unity, then

A

`A +B+C=3z_1`

B

`ABC=z_1 z_2 z_3`

C

`z_(1)^(3) + z_(2)^(3) +z_(3)^(3)=3z_1 z_2 z_3`

D

`|A|^2 + |B|^2 + |C|^2 = 3(|z_1|^2+ |z_2|^2 +|z_3|^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A + B + C \) given the equations involving complex numbers \( z_1, z_2, z_3 \) and the cube roots of unity \( 1, \omega, \omega^2 \). ### Step 1: Write down the equations We have the following equations: 1. \( z_1 + z_2 + z_3 = A \) 2. \( z_1 + z_2 \omega + z_3 \omega^2 = B \) 3. \( z_1 + z_2 \omega^2 + z_3 \omega = C \) ### Step 2: Add the equations Now, we will add all three equations together: \[ A + B + C = (z_1 + z_2 + z_3) + (z_1 + z_2 \omega + z_3 \omega^2) + (z_1 + z_2 \omega^2 + z_3 \omega) \] This simplifies to: \[ A + B + C = 3z_1 + z_2(1 + \omega + \omega^2) + z_3(1 + \omega^2 + \omega) \] ### Step 3: Use the property of cube roots of unity We know that for the cube roots of unity: \[ 1 + \omega + \omega^2 = 0 \] Thus, both \( 1 + \omega + \omega^2 \) and \( 1 + \omega^2 + \omega \) equal \( 0 \). ### Step 4: Substitute the values Substituting these values into our equation gives: \[ A + B + C = 3z_1 + z_2(0) + z_3(0) = 3z_1 \] ### Step 5: Conclusion Thus, we find that: \[ A + B + C = 3z_1 \] ### Final Answer The final result is: \[ A + B + C = 3z_1 \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - I|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - II|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - I|50 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If |z + omega|^(2) = |z|^(2)+|omega|^(2) , where z and omega are complex numbers , then

If a=z_1+z_2+z_3, b=z_1+omega z_2+omega^2z_3,c=z_1+omega^2z_2+omegaz_3(1,omega, omega^2 are cube roots of unity), then the value of z_2 in terms of a,b, and c is (A) (aomega^2+bomega+c)/3 (B) (aomega^2+bomega^2+c)/3 (C) (a+b+c)/3 (D) (a+bomega^2+comega)/3

Let S = { z: x = x+ iy, y ge 0,|z-z_(0)| le 1} , where |z_(0)|= |z_(0) - omega|= |z_(0) - omega^(2)|, omega and omega^(2) are non-real cube roots of unity. Then

If arg ((z-omega)/(z-omega^(2)))=0 then prove that Re (z)=-(1)/(2)(omega and omega^(2) are non-real cube roots of unity).

If z^(2)(bar(omega))^(4)=1 where omega is a nonreal complex cube root of 1 then find z .

ABCD is a rhombus in the argand plane.If the affixes of the vertices are z_(1),z_(2),z_(3),z_(4) respectively and /_CBA=(pi)/(3) then find the value of z_(1)+omega z_(2)+omega^(2)z_(3) where omega is a complex cube root of the unity

If z is a complex number satisfying |z-3|<=4 and | omega z-1-omega^(2)|=a (where omega is complex cube root of unity then

Let z,omega z and z+omega z represent three vertices of Delta ABC, where o is cube root unity,then

FIITJEE-COMPLEX NUMBER-ASSIGNMENT PROBLEMS (OBJECTIVE) Level - II
  1. If z=-2 + 2 sqrt3i then z^(2n) + z^(n) + 2^(4n) may be equal to

    Text Solution

    |

  2. The complex number satisfying |z+bar(z)|+|z - bar(z)|=2 and |z+i|+|z-i...

    Text Solution

    |

  3. If |(z1 z- z2)/(z1 z+z2)|=k, (z1 , z2 ne 0) then

    Text Solution

    |

  4. If z1 + a1 + ib1 and z2 = a2 + ib2 are complex such that |z1| = 1, |z2...

    Text Solution

    |

  5. If from a point P representing the complex number z1 on the curve |z...

    Text Solution

    |

  6. If |z1 + z2|=|z1| + |z2|, then one of the value of arguments of the co...

    Text Solution

    |

  7. If the complex numbers z1, z2, z3, z4 taken in that order, represent t...

    Text Solution

    |

  8. One vertex of the triangle of maximum area that can be inscribed in th...

    Text Solution

    |

  9. If x, y, a, b are real numbers such that (x+iy)^(1//5)=a + ib and p = ...

    Text Solution

    |

  10. Let z1, z2 be two complex numbers represented by points on the circle...

    Text Solution

    |

  11. If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(...

    Text Solution

    |

  12. The complex numbers satisfying |z+2|+|z-2|=8 and |z+6|+|z-6|=12

    Text Solution

    |

  13. If Z= (1+ xi)^(n) be a complex number such that its real and imaginary...

    Text Solution

    |

  14. If z(1),z(2),z(3),…,z(n-1) are the roots of the equation z^(n-1)+z^(n-...

    Text Solution

    |

  15. If ((1+i) z= (1-i))bar(z), then

    Text Solution

    |

  16. Let two distinct complex numbers z1 and z2 both satisfy the equation ...

    Text Solution

    |

  17. If z1 + z2 + z3 = A, z1 + z(2)omega+ z(3)omega^(2)= B, z1 + z(2) omeg...

    Text Solution

    |

  18. A, B, C are the points representing the complex numbers z1, z2, z3 res...

    Text Solution

    |

  19. If 1, omega, omega^2 ,…..,omega^(n-1) are the nth roots of unity, then...

    Text Solution

    |

  20. If omega ne 1 is a cube root of unity , then find the value of |{:(...

    Text Solution

    |