Home
Class 12
MATHS
If 1, omega, omega^2 ,…..,omega^(n-1) ar...

If `1, omega, omega^2 ,…..,omega^(n-1)` are the nth roots of unity, then `(2- omega)(2-omega^2)….(2-omega^(n-1) )` equals

A

`2^(n)-1`

B

`""^(n) C_(1) +^(n) C_(2) +….+^(n) C_(n)`

C

`[^(2n+1) C_(0) +^(2n+1) C_(1) + ….+^(2n+1) C_(n)]^(1//2)-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((2 - \omega)(2 - \omega^2) \cdots (2 - \omega^{n-1})\), where \(\omega\) is a primitive \(n\)th root of unity. ### Step-by-Step Solution: 1. **Understanding Roots of Unity**: The \(n\)th roots of unity are the solutions to the equation \(z^n = 1\). These roots are given by \(1, \omega, \omega^2, \ldots, \omega^{n-1}\), where \(\omega = e^{2\pi i/n}\). 2. **Formulating the Polynomial**: The polynomial whose roots are the \(n\)th roots of unity can be expressed as: \[ P(z) = z^n - 1 = (z - 1)(z - \omega)(z - \omega^2) \cdots (z - \omega^{n-1}). \] 3. **Rearranging the Polynomial**: We can express \(P(z)\) in the form: \[ P(z) = (z - 1)Q(z), \] where \(Q(z) = (z - \omega)(z - \omega^2) \cdots (z - \omega^{n-1})\). 4. **Evaluating at \(z = 2\)**: We need to evaluate \(Q(2)\): \[ Q(2) = (2 - \omega)(2 - \omega^2) \cdots (2 - \omega^{n-1}). \] From the polynomial \(P(z)\), we know: \[ P(2) = 2^n - 1. \] Therefore, \[ P(2) = (2 - 1)Q(2) = Q(2). \] Hence, \[ Q(2) = 2^n - 1. \] 5. **Final Result**: Thus, we conclude that: \[ (2 - \omega)(2 - \omega^2) \cdots (2 - \omega^{n-1}) = 2^n - 1. \] ### Summary: The value of \((2 - \omega)(2 - \omega^2) \cdots (2 - \omega^{n-1})\) is \(2^n - 1\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - I|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - II|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - I|50 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

if 1,omega,omega^(2),............omega^(n-1) are nth roots of unity,then (1-omega)(1-omega^(2))......(1-omega^(n-1)) equal to

If 1,omega,omega^(2),...omega^(n-1) are n, nth roots of unity, find the value of (9-omega)(9-omega^(2))...(9-omega^(n-1)).

1,omega,omega^(2) are the cube roots of unity then (2-omega)(2-omega^(2))(2-omega^(13))(2-omega^(17))

If 1,omega,......,omega^(n-1) are the n^(th) roots of unity,then value of (1)/(2-omega)+(1)/(2-omega^(2))......+(1)/(2-omega^(n-1)) equals

if 1,omega, omega^2 are the cube roots of unity then the value of (2-omega)(2-omega^2)(2-omega^(10))(2-omega^(11))=

If 1,omega,omega^(2) are the roots of unity then (1-omega+omega^(2))^(3)+(1+omega-omega^(2))^3=

FIITJEE-COMPLEX NUMBER-ASSIGNMENT PROBLEMS (OBJECTIVE) Level - II
  1. If z=-2 + 2 sqrt3i then z^(2n) + z^(n) + 2^(4n) may be equal to

    Text Solution

    |

  2. The complex number satisfying |z+bar(z)|+|z - bar(z)|=2 and |z+i|+|z-i...

    Text Solution

    |

  3. If |(z1 z- z2)/(z1 z+z2)|=k, (z1 , z2 ne 0) then

    Text Solution

    |

  4. If z1 + a1 + ib1 and z2 = a2 + ib2 are complex such that |z1| = 1, |z2...

    Text Solution

    |

  5. If from a point P representing the complex number z1 on the curve |z...

    Text Solution

    |

  6. If |z1 + z2|=|z1| + |z2|, then one of the value of arguments of the co...

    Text Solution

    |

  7. If the complex numbers z1, z2, z3, z4 taken in that order, represent t...

    Text Solution

    |

  8. One vertex of the triangle of maximum area that can be inscribed in th...

    Text Solution

    |

  9. If x, y, a, b are real numbers such that (x+iy)^(1//5)=a + ib and p = ...

    Text Solution

    |

  10. Let z1, z2 be two complex numbers represented by points on the circle...

    Text Solution

    |

  11. If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(...

    Text Solution

    |

  12. The complex numbers satisfying |z+2|+|z-2|=8 and |z+6|+|z-6|=12

    Text Solution

    |

  13. If Z= (1+ xi)^(n) be a complex number such that its real and imaginary...

    Text Solution

    |

  14. If z(1),z(2),z(3),…,z(n-1) are the roots of the equation z^(n-1)+z^(n-...

    Text Solution

    |

  15. If ((1+i) z= (1-i))bar(z), then

    Text Solution

    |

  16. Let two distinct complex numbers z1 and z2 both satisfy the equation ...

    Text Solution

    |

  17. If z1 + z2 + z3 = A, z1 + z(2)omega+ z(3)omega^(2)= B, z1 + z(2) omeg...

    Text Solution

    |

  18. A, B, C are the points representing the complex numbers z1, z2, z3 res...

    Text Solution

    |

  19. If 1, omega, omega^2 ,…..,omega^(n-1) are the nth roots of unity, then...

    Text Solution

    |

  20. If omega ne 1 is a cube root of unity , then find the value of |{:(...

    Text Solution

    |