Home
Class 12
MATHS
Read the following writeup carefully: ...

Read the following writeup carefully:
In argand plane `|z|` represent the distance of a point z from the origin. In general `|z_1-z_2|` represent the distance between two points `z_1 and z_2`. Also for a general moving point z in argand plane, if arg(z) `=theta`, then `z=|z|e^(itheta)`, where `e^(itheta) = cos theta + i sintheta`.
Now answer the following question
If `|z-(3+2i)|=|z cos ((pi)/(4) - "arg" z)|,` then locus of z is

A

circle

B

parabola

C

ellipse

D

hyperbola

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the locus of the complex number \( z \) given the equation: \[ |z - (3 + 2i)| = |z \cos\left(\frac{\pi}{4} - \arg z\right)| \] ### Step 1: Express \( z \) in terms of \( x \) and \( y \) Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. The expression for the distance from the point \( (3, 2) \) in the Argand plane is: \[ |z - (3 + 2i)| = |(x - 3) + i(y - 2)| = \sqrt{(x - 3)^2 + (y - 2)^2} \] ### Step 2: Express \( |z| \) and \( \arg z \) The modulus of \( z \) is: \[ |z| = \sqrt{x^2 + y^2} \] The argument of \( z \) is given by: \[ \arg z = \tan^{-1}\left(\frac{y}{x}\right) \] ### Step 3: Rewrite the right-hand side The right-hand side of the equation involves \( \cos\left(\frac{\pi}{4} - \arg z\right) \). Using the cosine subtraction formula: \[ \cos\left(\frac{\pi}{4} - \arg z\right) = \cos\left(\frac{\pi}{4}\right)\cos(\arg z) + \sin\left(\frac{\pi}{4}\right)\sin(\arg z) \] Substituting \( \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \): \[ \cos\left(\frac{\pi}{4} - \arg z\right) = \frac{1}{\sqrt{2}}\left(\frac{x}{\sqrt{x^2 + y^2}} + \frac{y}{\sqrt{x^2 + y^2}}\right) = \frac{x + y}{\sqrt{2}\sqrt{x^2 + y^2}} \] Thus, the right-hand side becomes: \[ |z \cos\left(\frac{\pi}{4} - \arg z\right)| = |z| \cdot \cos\left(\frac{\pi}{4} - \arg z\right) = \sqrt{x^2 + y^2} \cdot \frac{x + y}{\sqrt{2}\sqrt{x^2 + y^2}} = \frac{x + y}{\sqrt{2}} \] ### Step 4: Set up the equation Now we can equate both sides of the original equation: \[ \sqrt{(x - 3)^2 + (y - 2)^2} = \frac{x + y}{\sqrt{2}} \] ### Step 5: Square both sides Squaring both sides gives: \[ (x - 3)^2 + (y - 2)^2 = \frac{(x + y)^2}{2} \] ### Step 6: Expand and simplify Expanding both sides: \[ (x^2 - 6x + 9) + (y^2 - 4y + 4) = \frac{x^2 + 2xy + y^2}{2} \] Combining terms: \[ x^2 + y^2 - 6x - 4y + 13 = \frac{x^2 + 2xy + y^2}{2} \] Multiply through by 2 to eliminate the fraction: \[ 2x^2 + 2y^2 - 12x - 8y + 26 = x^2 + 2xy + y^2 \] Rearranging gives: \[ x^2 + y^2 - 2xy - 12x - 8y + 26 = 0 \] ### Step 7: Identify the locus This is a conic section. To analyze it further, we can complete the square or use the general conic form. ### Final Result The locus of \( z \) is a conic section, specifically a hyperbola.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - II|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise COMPREHENSION - III|2 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - II|22 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

In argand plane |z| represent the distance of a point z from the origin. In general |z_(1)-z_(2)| represent the distance between two points z_(1) and z_(2) . Also for a general moving point z in argand plane, if arg(z)=theta , then z=|z|e^(i theta) , where e^(i theta)=cos theta+i sin theta . If |z-(3+2i)|=|z cos((pi)/(4)-"arg z")| , then locus of z is

In argand plane |z| represent the distance of a point z from the origin. In general |z_(1)-z_(2)| represent the distance between two points z_(1) and z_(2) . Also for a general moving point z in argand plane, if arg(z)=theta , then z=|z|e^(i theta) , where e^(i theta)=cos theta+i sin theta . If z_(1)=4e^(i pi//3) and z_(2)=2e^(i5pi//6) , then |z_(1)-z_(2)| equals

In the Argand plane |(z-i)/(z+i)| = 4 represents a

z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

Locate the region in the argand plane for z satisfying |z+i|=|z-2|.

If |z-1|=1, where is a point on the argand plane, show that (z-2)/(z)=i tan (argz),where i=sqrt(-1).

If z=x+iy and if the point p in the argand plane represents z ,then the locus of z satisfying Im (z^(2))=4