If `omega` is complex cube root of that `1/(a+omega)+1/(b+omega)+1/(c+omega)=2omega^2` and `1/(a+omega^2)+1/(b+omega^2)+1/(c+omega^2)=2omega` then the value of `1/(a+1)+1/(b+1)+1/(c+1)=`
Text Solution
Verified by Experts
The correct Answer is:
B
Topper's Solved these Questions
COMPLEX NUMBER
FIITJEE|Exercise MATCH THE COLUMN|6 Videos
CIRCLE
FIITJEE|Exercise Numerical Based|2 Videos
DEFINITE INTEGRAL
FIITJEE|Exercise NUMERICAL BASED|3 Videos
Similar Questions
Explore conceptually related problems
If omega_(1) is complex cube root of that (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)=2 omega^(2) and (1)/(a+omega^(2))+(1)/(b+omega^(2))+(1)/(c+omega^(2))=2 omega then the value of (1)/(a+1)+(1)/(b+1)+(1)/(c+1)=
If omega_(1) is complex cube root of that (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)=2 omega^(2) and (1)/(a+omega^(2))+(1)/(b+omega^(2))+(1)/(c+omega^(2))=2 omega then the value of (1)/(a+1)+(1)/(b+1)+(1)/(c+1)=
if omega and omega^(2) are the nonreal cube roots of unity and [1/(a+omega)]+[1/(b+omega)]+[1/(c+omega)]=2 omega^(2) and [1/(a+omega)^(2)]+[1/(b+omega)^(2)]+[1/(c+omega)^(2)]=2 omega then find the value of [1/(a+1)]+[1/(b+1)]+[1/(c+1)]
If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)
If omega is a complex cube root of unity.Show that Det[[1,omega,omega^(2)omega,omega^(2),1omega^(2),1,omega]]=0
omega is a complex cube root of unity,then (1-omega)(1-+-ega^(2))(1-omega^(4))(1-omega^(8))
If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=
If omega be a complex cube root of unity then the value of (1)/(1+2 omega)-(1)/(1+omega)+(1)/(2+omega) is
If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a