Home
Class 12
MATHS
Multiply the following determinants and ...

Multiply the following determinants and obtain four different determinants by multiplying row to row, to column , column to row and column to column
`|{:(3,4),(1,2):}|xx|{:(6,2),(3,1):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to multiply the two determinants and obtain four different determinants by performing the specified operations: row to row, row to column, column to row, and column to column. Given determinants: \[ D_1 = \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}, \quad D_2 = \begin{vmatrix} 6 & 2 \\ 3 & 1 \end{vmatrix} \] ### Step 1: Calculate the Determinants First, we calculate the determinants \(D_1\) and \(D_2\). 1. **Calculate \(D_1\)**: \[ D_1 = 3 \cdot 2 - 4 \cdot 1 = 6 - 4 = 2 \] 2. **Calculate \(D_2\)**: \[ D_2 = 6 \cdot 1 - 2 \cdot 3 = 6 - 6 = 0 \] ### Step 2: Row to Row To perform the row to row multiplication, we multiply each row of \(D_1\) with each row of \(D_2\). \[ \text{Row to Row: } \begin{vmatrix} 3 \cdot 6 + 4 \cdot 3 & 3 \cdot 2 + 4 \cdot 1 \\ 1 \cdot 6 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 1 \end{vmatrix} \] Calculating the elements: - First row, first column: \(3 \cdot 6 + 4 \cdot 3 = 18 + 12 = 30\) - First row, second column: \(3 \cdot 2 + 4 \cdot 1 = 6 + 4 = 10\) - Second row, first column: \(1 \cdot 6 + 2 \cdot 3 = 6 + 6 = 12\) - Second row, second column: \(1 \cdot 2 + 2 \cdot 1 = 2 + 2 = 4\) So, the resulting determinant is: \[ \begin{vmatrix} 30 & 10 \\ 12 & 4 \end{vmatrix} \] ### Step 3: Row to Column For row to column multiplication, we multiply each row of \(D_1\) with each column of \(D_2\). \[ \text{Row to Column: } \begin{vmatrix} 3 \cdot 6 + 4 \cdot 2 & 3 \cdot 3 + 4 \cdot 1 \\ 1 \cdot 6 + 2 \cdot 2 & 1 \cdot 3 + 2 \cdot 1 \end{vmatrix} \] Calculating the elements: - First row, first column: \(3 \cdot 6 + 4 \cdot 2 = 18 + 8 = 26\) - First row, second column: \(3 \cdot 3 + 4 \cdot 1 = 9 + 4 = 13\) - Second row, first column: \(1 \cdot 6 + 2 \cdot 2 = 6 + 4 = 10\) - Second row, second column: \(1 \cdot 3 + 2 \cdot 1 = 3 + 2 = 5\) So, the resulting determinant is: \[ \begin{vmatrix} 26 & 13 \\ 10 & 5 \end{vmatrix} \] ### Step 4: Column to Row For column to row multiplication, we multiply each column of \(D_1\) with each row of \(D_2\). \[ \text{Column to Row: } \begin{vmatrix} 3 \cdot 6 + 1 \cdot 2 & 3 \cdot 2 + 1 \cdot 1 \\ 4 \cdot 6 + 2 \cdot 2 & 4 \cdot 2 + 2 \cdot 1 \end{vmatrix} \] Calculating the elements: - First column, first row: \(3 \cdot 6 + 1 \cdot 2 = 18 + 2 = 20\) - First column, second row: \(3 \cdot 2 + 1 \cdot 1 = 6 + 1 = 7\) - Second column, first row: \(4 \cdot 6 + 2 \cdot 2 = 24 + 4 = 28\) - Second column, second row: \(4 \cdot 2 + 2 \cdot 1 = 8 + 2 = 10\) So, the resulting determinant is: \[ \begin{vmatrix} 20 & 7 \\ 28 & 10 \end{vmatrix} \] ### Step 5: Column to Column For column to column multiplication, we multiply each column of \(D_1\) with each column of \(D_2\). \[ \text{Column to Column: } \begin{vmatrix} 3 \cdot 6 + 1 \cdot 3 & 3 \cdot 2 + 1 \cdot 2 \\ 4 \cdot 6 + 2 \cdot 3 & 4 \cdot 2 + 2 \cdot 1 \end{vmatrix} \] Calculating the elements: - First column, first row: \(3 \cdot 6 + 1 \cdot 3 = 18 + 3 = 21\) - First column, second row: \(3 \cdot 2 + 1 \cdot 2 = 6 + 2 = 8\) - Second column, first row: \(4 \cdot 6 + 2 \cdot 3 = 24 + 6 = 30\) - Second column, second row: \(4 \cdot 2 + 2 \cdot 1 = 8 + 2 = 10\) So, the resulting determinant is: \[ \begin{vmatrix} 21 & 8 \\ 30 & 10 \end{vmatrix} \] ### Summary of Results: 1. Row to Row: \(\begin{vmatrix} 30 & 10 \\ 12 & 4 \end{vmatrix}\) 2. Row to Column: \(\begin{vmatrix} 26 & 13 \\ 10 & 5 \end{vmatrix}\) 3. Column to Row: \(\begin{vmatrix} 20 & 7 \\ 28 & 10 \end{vmatrix}\) 4. Column to Column: \(\begin{vmatrix} 21 & 8 \\ 30 & 10 \end{vmatrix}\)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Row matrix and column matrix

The intersection of row and column is known as_____

Write a matrix which contains 1 row and 3 columns.

If each element in a row of a determinant is multiplied by the same factor r, then the value of the determinant

The element in the second row and third column of the matrix [(4,5,-6),(3,-4,3),(2,1,0)] is

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(3,-1),(-4,2)]