Home
Class 12
MATHS
If xyz=m and det p=|{:(x,y,z),(z,x,y),(y...

If xyz=m and det `p=|{:(x,y,z),(z,x,y),(y,z,x):}|` , where p is an orthogonal matrix.
The value of `x^3+y^3+z^3` can be

A

`6m pm1`

B

`3m pm1`

C

`pm 3m`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given information and use the properties of determinants and orthogonal matrices. ### Step 1: Understand the Orthogonal Matrix Given that \( P = \begin{pmatrix} x & y & z \\ z & x & y \\ y & z & x \end{pmatrix} \) is an orthogonal matrix, we know that \( P^T P = I \), where \( P^T \) is the transpose of \( P \) and \( I \) is the identity matrix. ### Step 2: Calculate the Transpose of Matrix P The transpose of matrix \( P \) is: \[ P^T = \begin{pmatrix} x & z & y \\ y & x & z \\ z & y & x \end{pmatrix} \] ### Step 3: Multiply \( P \) and \( P^T \) We need to compute \( P P^T \): \[ P P^T = \begin{pmatrix} x & y & z \\ z & x & y \\ y & z & x \end{pmatrix} \begin{pmatrix} x & z & y \\ y & x & z \\ z & y & x \end{pmatrix} \] Calculating the elements of the resulting matrix: - First row, first column: \( x^2 + y^2 + z^2 \) - First row, second column: \( xy + xz + yz \) - First row, third column: \( xz + yz + xy \) Continuing this for all rows, we get: \[ P P^T = \begin{pmatrix} x^2 + y^2 + z^2 & xy + xz + yz & xy + xz + yz \\ xy + xz + yz & z^2 + x^2 + y^2 & xy + xz + yz \\ xy + xz + yz & xy + xz + yz & y^2 + z^2 + x^2 \end{pmatrix} \] ### Step 4: Set Equal to Identity Matrix Since \( P \) is orthogonal, we set \( P P^T = I \): \[ \begin{pmatrix} x^2 + y^2 + z^2 & xy + xz + yz & xy + xz + yz \\ xy + xz + yz & z^2 + x^2 + y^2 & xy + xz + yz \\ xy + xz + yz & xy + xz + yz & y^2 + z^2 + x^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] From this, we can derive: 1. \( x^2 + y^2 + z^2 = 1 \) 2. \( xy + xz + yz = 0 \) ### Step 5: Use the Identity for \( x^3 + y^3 + z^3 \) We can use the identity: \[ x^3 + y^3 + z^3 = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz) + 3xyz \] ### Step 6: Substitute Known Values From our earlier findings: - \( x^2 + y^2 + z^2 = 1 \) - \( xy + xz + yz = 0 \) Thus: \[ x^3 + y^3 + z^3 = (x + y + z)(1 - 0) + 3xyz = (x + y + z) + 3xyz \] ### Step 7: Find \( x + y + z \) Using the equation \( (x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + xz + yz) \): \[ (x + y + z)^2 = 1 + 2(0) = 1 \] Thus, \( x + y + z = \pm 1 \). ### Step 8: Substitute Back Let \( xyz = m \): \[ x^3 + y^3 + z^3 = (x + y + z) + 3m \] So we have: \[ x^3 + y^3 + z^3 = \pm 1 + 3m \] ### Final Answer The value of \( x^3 + y^3 + z^3 \) can be \( 3m + 1 \) or \( 3m - 1 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise MATCH THE COLUMNS|5 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -II|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. The value of x^(-1)+y^(-1)+z^(-1) is

If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. If y=x=z, then z is equal to

If A=[(x,y,z),(y,z,x),(z,x,y)] and A^3=I_3 and xyz=2 and x+y+z gt 0 find the value of x^3+y^3+z^3 is

if x = 332 , y= 333 , z, =335 then the value of x^3 + y^3 +z^3- 3 xyz is

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

If x + y + z = 6 and x^2 + y^2 + z^2= 20 then the value of x^3 + y^3 + z^3 - 3xyz is