Let `alpha,beta` , be the roots of the equation `x^2+x-1=0`. Let `S_n=alpha^n+beta^n "for" n ge 1`. Evaluate the determinant `|{:(3,1+s_1,1+s_2),(1+s_1,1+s_2,1+s_3),(1+s_2,1+s_3,1+s_4):}|`
Text Solution
Verified by Experts
The correct Answer is:
5
Topper's Solved these Questions
DETERMINANT
FIITJEE|Exercise MATCH THE COLUMNS|5 Videos
DEFINITE INTEGRAL
FIITJEE|Exercise NUMERICAL BASED|3 Videos
ELLIPSE
FIITJEE|Exercise NUMERICAL BASED|4 Videos
Similar Questions
Explore conceptually related problems
Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then
Let alpha and beta be the roots of the equation 5x^2 + 6x-2 =0 if S_(n ) = alpha ^(n) + beta^(n) , n= 1,2,3 ..,, then :
alpha and beta are the roots of x^2-x-1=0 and S_n=2023 alpha^n 2024 beta^n then
If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) then evaluate det[[3,1+s_(1),=alpha^(n)+beta^(n)3,1+s_(1),+s_(2)1+s_(1),1+s_(2),1+s_(3)1+s_(2),1+s_(3),1+s_(4)]]
Let alpha,beta be the roots of x^(2)-x-1=0 and S_(n)=alpha^(n)+beta^(n), for all integers n>=1. Then,for every integern n>=2.
If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n), then a S_(n+1)+cS_(n)-1)=