If `x gt m,ygt n,z gt r (x,y,z gt 0)` such that `|{:(x,n,r),(m,y,r),(m,n,z):}|=0` then the greatest value of `(27xyz)/((x-m)(y-n)(z-r))` is
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to evaluate the determinant and find the greatest value of the expression \(\frac{27xyz}{(x-m)(y-n)(z-r)}\) given that the determinant \(|\begin{pmatrix} x & n & r \\ m & y & r \\ m & n & z \end{pmatrix}| = 0\).
### Step-by-Step Solution:
1. **Set Up the Determinant:**
We start with the determinant:
\[
D = \begin{vmatrix} x & n & r \\ m & y & r \\ m & n & z \end{vmatrix}
\]
Given that \(D = 0\).
2. **Row Operations:**
We perform row operations to simplify the determinant. We can replace \(R_2\) with \(R_2 - R_3\):
\[
D = \begin{vmatrix} x & n & r \\ m & y-n & r-z \\ m & n & z \end{vmatrix}
\]
3. **Expand the Determinant:**
We can expand the determinant using the first row:
\[
D = x \begin{vmatrix} y-n & r-z \\ n & z \end{vmatrix} - n \begin{vmatrix} m & r-z \\ m & z \end{vmatrix} + r \begin{vmatrix} m & y-n \\ m & n \end{vmatrix}
\]
4. **Calculate the 2x2 Determinants:**
- For the first determinant:
\[
\begin{vmatrix} y-n & r-z \\ n & z \end{vmatrix} = (y-n)z - n(r-z) = yz - nz - nr + nz = yz - nr
\]
- For the second determinant:
\[
\begin{vmatrix} m & r-z \\ m & z \end{vmatrix} = mz - m(r-z) = mz - mr + mz = 2mz - mr
\]
- For the third determinant:
\[
\begin{vmatrix} m & y-n \\ m & n \end{vmatrix} = mn - m(y-n) = mn - my + mn = 2mn - my
\]
5. **Substituting Back:**
Substitute these back into the determinant:
\[
D = x(yz - nr) - n(2mz - mr) + r(2mn - my)
\]
6. **Set the Determinant to Zero:**
Since \(D = 0\), we can rearrange this equation to find a relationship between \(x\), \(y\), and \(z\).
7. **Using AM-GM Inequality:**
From the properties of determinants and the conditions \(x > m\), \(y > n\), \(z > r\), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality:
\[
\frac{x}{x-m} + \frac{y}{y-n} + \frac{z}{z-r} \geq 3\sqrt[3]{\frac{xyz}{(x-m)(y-n)(z-r)}}
\]
8. **Finding the Maximum Value:**
From the determinant condition, we derive that:
\[
\frac{x}{x-m} + \frac{y}{y-n} + \frac{z}{z-r} = 2
\]
Thus, we have:
\[
2 \geq 3\sqrt[3]{\frac{xyz}{(x-m)(y-n)(z-r)}}
\]
9. **Cubing Both Sides:**
Cubing both sides gives:
\[
8 \geq \frac{27xyz}{(x-m)(y-n)(z-r)}
\]
10. **Conclusion:**
Therefore, the greatest value of \(\frac{27xyz}{(x-m)(y-n)(z-r)}\) is \(8\).
### Final Answer:
The greatest value of \(\frac{27xyz}{(x-m)(y-n)(z-r)}\) is \(\boxed{8}\).
Topper's Solved these Questions
DETERMINANT
FIITJEE|Exercise MATCH THE COLUMNS|5 Videos
DEFINITE INTEGRAL
FIITJEE|Exercise NUMERICAL BASED|3 Videos
ELLIPSE
FIITJEE|Exercise NUMERICAL BASED|4 Videos
Similar Questions
Explore conceptually related problems
if x gt m,y gt n,z gt r (x,y,zgt 0) such that |{:(x,,n,,r),(m,,y,,r),(m,,n,,z):}|=0 the value (xyz)/((x-m)(y-n)(z-r)) is
if x gt m,y gt n,z gt r (x,y,zgt 0) such that |{:(x,,n,,r),(m,,y,,r),(m,,n,,z):}|=0 The value of (x)/(x-m)+(y)/(y-n)+(z)/(z-r) is
if x gt m,y gt n,z gt r (x,y,zgt 0) such that |{:(x,,n,,r),(m,,y,,r),(m,,n,,z):}|=0 the value of (m)/(x-m)+(n)/(y-n) +(r )/(z-r) is
If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. The value of x^(-1)+y^(-1)+z^(-1) is
If x^(2)+y^(2)+z^(2)=1 , where x,y,z in R^(+) then greatest value of x^(2)y^(3)z^(4) is
If A = {x, y, z}, then the relation R={(x,x),(y,y),(z,z),(z,x),(z,y)} , is
" If "x,y,z in R^(+)" such that "x+y+z=4" ,then maximum possible value of "xyz^(2)" is - "