Home
Class 12
MATHS
If A=[(1,0,1),(0,0,0),(1,0,1)], then fin...

If `A=[(1,0,1),(0,0,0),(1,0,1)]`, then find `|A^(2)|`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( |A^2| \) where \( A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix \( A \) The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by the formula: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \] Substituting the values into the determinant formula: \[ |A| = 1(0 \cdot 1 - 0 \cdot 0) - 0(0 \cdot 1 - 1 \cdot 0) + 1(0 \cdot 0 - 0 \cdot 1) \] This simplifies to: \[ |A| = 1(0 - 0) - 0(0 - 0) + 1(0 - 0) = 0 \] ### Step 2: Calculate \( |A^2| \) Using the property of determinants, we know that: \[ |A^2| = |A|^2 \] Since we have already found \( |A| = 0 \): \[ |A^2| = 0^2 = 0 \] ### Final Answer Thus, the value of \( |A^2| \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|41 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is

If A={:[(0,1,0),(1,0,0),(0,0,1)]:}," then "A^(-1)=

If A =[{:(2,0,0),(0,1,0),(0,0,1):}] then adj(A) =

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-SIX MARK QUESTIONS
  1. If A=[(1,0,1),(0,0,0),(1,0,1)], then find |A^(2)|.

    Text Solution

    |

  2. Prove that |y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z ...

    Text Solution

    |

  3. Using elementary tansformations, find the inverse of the matrix A=[(...

    Text Solution

    |

  4. Using matrix method, solve the system of linear equations x-2y=10,2x...

    Text Solution

    |

  5. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  6. Find the matrix x for which [(3,2),(7,5)]x[(-1,1),(-2,1)]=[(2,-1),(0,4...

    Text Solution

    |

  7. Let A=[2 3-1 2] and f(x)=x^2-4x+7 . Show that f(A)=O . Use this result...

    Text Solution

    |

  8. If a+b+c=0and|(a-x,c,b),(c,b-x,a),(b,a,c-x)|=0, then show that either ...

    Text Solution

    |

  9. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  10. |((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2)|=-8...

    Text Solution

    |

  11. Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab...

    Text Solution

    |

  12. Prove that: |(a,a+c,a-b),(b-c,b,b+a),(c+b,c-a,c)|=(a+b+c)(a^(2)+b^(2)+...

    Text Solution

    |

  13. If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respective...

    Text Solution

    |

  14. Prove that (x-2)(x-1) is factor of |(1,1,x),(beta+1,beta+1,beta+x),(3,...

    Text Solution

    |

  15. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  16. Determination the product [{:(,-4,4,4),(,-7,1,3),(,5,-3,-1):}] [{:(,1,...

    Text Solution

    |

  17. If A=[1-1 1 2 1-3 1 1 1], find A^(-1) and hence solve the system of li...

    Text Solution

    |

  18. Solve given system of equations by matrix method: (2)/(a)+(3)/(b)+(4...

    Text Solution

    |

  19. To raise money for an orphanage, students of three schools A, B and C ...

    Text Solution

    |

  20. Two cricket teams honored their players for three values, excellent ba...

    Text Solution

    |

  21. If [(1,2,0),(-2,-1,-2),(0,-1,1)], find A^-1. Using A^-1, solve the sys...

    Text Solution

    |