Home
Class 12
MATHS
Without expanding, find the value of |(c...

Without expanding, find the value of `|(cosec^(2)theta,cot^(2)theta,1),(cot^(2)theta,cosec^(2)theta,-1),(42,40,2)|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} \csc^2 \theta & \cot^2 \theta & 1 \\ \cot^2 \theta & \csc^2 \theta & -1 \\ 42 & 40 & 2 \end{vmatrix} \] we will use properties of determinants without expanding it. ### Step 1: Modify the Determinant We can perform column operations on the determinant. Specifically, we will subtract the second column from the first column. This gives us: \[ D = \begin{vmatrix} \csc^2 \theta - \cot^2 \theta & \cot^2 \theta & 1 \\ \cot^2 \theta - \csc^2 \theta & \csc^2 \theta & -1 \\ 42 - 40 & 40 & 2 \end{vmatrix} \] ### Step 2: Simplify the Entries Now, simplify the entries in the first column: - The first row becomes \(\csc^2 \theta - \cot^2 \theta\) - The second row becomes \(\cot^2 \theta - \csc^2 \theta\) - The third row becomes \(2\) Thus, the determinant now looks like: \[ D = \begin{vmatrix} \csc^2 \theta - \cot^2 \theta & \cot^2 \theta & 1 \\ \cot^2 \theta - \csc^2 \theta & \csc^2 \theta & -1 \\ 2 & 40 & 2 \end{vmatrix} \] ### Step 3: Observe the Columns Notice that the first column can be rewritten as: \[ \begin{vmatrix} \csc^2 \theta - \cot^2 \theta & \cot^2 \theta & 1 \\ \cot^2 \theta - \csc^2 \theta & \csc^2 \theta & -1 \\ 2 & 40 & 2 \end{vmatrix} \] ### Step 4: Check for Equal Columns Now, observe that if we denote the first column as \(C_1\) and the second column as \(C_2\), we see that: - \(C_1 = \begin{pmatrix} \csc^2 \theta - \cot^2 \theta \\ \cot^2 \theta - \csc^2 \theta \\ 2 \end{pmatrix}\) - \(C_2 = \begin{pmatrix} \cot^2 \theta \\ \csc^2 \theta \\ 40 \end{pmatrix}\) However, we can see that the first and second rows of the first column are negatives of each other. This means that the first and second rows of the determinant are linearly dependent. ### Step 5: Conclusion Since we have two rows (or columns) that are linearly dependent, the value of the determinant must be zero. Thus, we conclude that: \[ D = 0 \] ### Final Answer The value of the determinant is \(0\). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|41 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

cosec^(2)theta=1+cot^(2)theta

cosec^(6)theta-cot^(6)theta-3cot^(2)theta.cosec^(2)theta=?

cosec^(4)theta+cot^(2)theta+cosec^(2)theta)"=

Write the value of (tan^(2)theta-sec^(2)theta)/(cot^(2)theta-"cosec"^(2)theta).

csc^(6)theta-cot^(6)theta=1+3csc^(2)theta cot^(2)theta

Without expanding show that: cosec theta,cot^(2)theta,1cot^(2)theta,csc^(2)theta,-142,40,2]|=0

The value of ("cosec" theta -cot theta)^(2) is

Solve cosec^(2)theta-cot^(2) theta=cos theta .

Write the value of 3 cot^(2)theta - 3 "cosec"^(2)theta.

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-SIX MARK QUESTIONS
  1. Without expanding, find the value of |(cosec^(2)theta,cot^(2)theta,1),...

    Text Solution

    |

  2. Prove that |y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z ...

    Text Solution

    |

  3. Using elementary tansformations, find the inverse of the matrix A=[(...

    Text Solution

    |

  4. Using matrix method, solve the system of linear equations x-2y=10,2x...

    Text Solution

    |

  5. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  6. Find the matrix x for which [(3,2),(7,5)]x[(-1,1),(-2,1)]=[(2,-1),(0,4...

    Text Solution

    |

  7. Let A=[2 3-1 2] and f(x)=x^2-4x+7 . Show that f(A)=O . Use this result...

    Text Solution

    |

  8. If a+b+c=0and|(a-x,c,b),(c,b-x,a),(b,a,c-x)|=0, then show that either ...

    Text Solution

    |

  9. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  10. |((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2)|=-8...

    Text Solution

    |

  11. Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab...

    Text Solution

    |

  12. Prove that: |(a,a+c,a-b),(b-c,b,b+a),(c+b,c-a,c)|=(a+b+c)(a^(2)+b^(2)+...

    Text Solution

    |

  13. If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respective...

    Text Solution

    |

  14. Prove that (x-2)(x-1) is factor of |(1,1,x),(beta+1,beta+1,beta+x),(3,...

    Text Solution

    |

  15. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  16. Determination the product [{:(,-4,4,4),(,-7,1,3),(,5,-3,-1):}] [{:(,1,...

    Text Solution

    |

  17. If A=[1-1 1 2 1-3 1 1 1], find A^(-1) and hence solve the system of li...

    Text Solution

    |

  18. Solve given system of equations by matrix method: (2)/(a)+(3)/(b)+(4...

    Text Solution

    |

  19. To raise money for an orphanage, students of three schools A, B and C ...

    Text Solution

    |

  20. Two cricket teams honored their players for three values, excellent ba...

    Text Solution

    |

  21. If [(1,2,0),(-2,-1,-2),(0,-1,1)], find A^-1. Using A^-1, solve the sys...

    Text Solution

    |