Home
Class 12
MATHS
If A=[(5,3),(12,7)], show that A^(2)-12A...

If `A=[(5,3),(12,7)]`, show that `A^(2)-12A-I=0`. Hence find `A^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( A^2 - 12A - I = 0 \) for the matrix \( A = \begin{pmatrix} 5 & 3 \\ 12 & 7 \end{pmatrix} \) and then find the inverse of \( A \). ### Step 1: Calculate \( A^2 \) First, we need to compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 5 & 3 \\ 12 & 7 \end{pmatrix} \cdot \begin{pmatrix} 5 & 3 \\ 12 & 7 \end{pmatrix} \] Calculating the product: \[ A^2 = \begin{pmatrix} (5 \cdot 5 + 3 \cdot 12) & (5 \cdot 3 + 3 \cdot 7) \\ (12 \cdot 5 + 7 \cdot 12) & (12 \cdot 3 + 7 \cdot 7) \end{pmatrix} \] Calculating each element: - First row, first column: \( 5 \cdot 5 + 3 \cdot 12 = 25 + 36 = 61 \) - First row, second column: \( 5 \cdot 3 + 3 \cdot 7 = 15 + 21 = 36 \) - Second row, first column: \( 12 \cdot 5 + 7 \cdot 12 = 60 + 84 = 144 \) - Second row, second column: \( 12 \cdot 3 + 7 \cdot 7 = 36 + 49 = 85 \) Thus, \[ A^2 = \begin{pmatrix} 61 & 36 \\ 144 & 85 \end{pmatrix} \] ### Step 2: Calculate \( 12A \) Next, we calculate \( 12A \): \[ 12A = 12 \cdot \begin{pmatrix} 5 & 3 \\ 12 & 7 \end{pmatrix} = \begin{pmatrix} 60 & 36 \\ 144 & 84 \end{pmatrix} \] ### Step 3: Calculate \( A^2 - 12A - I \) Now we need to compute \( A^2 - 12A - I \): First, we need the identity matrix \( I \): \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Now, we subtract \( 12A \) and \( I \) from \( A^2 \): \[ A^2 - 12A - I = \begin{pmatrix} 61 & 36 \\ 144 & 85 \end{pmatrix} - \begin{pmatrix} 60 & 36 \\ 144 & 84 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Calculating the subtraction: \[ = \begin{pmatrix} 61 - 60 - 1 & 36 - 36 - 0 \\ 144 - 144 - 0 & 85 - 84 - 1 \end{pmatrix} \] This simplifies to: \[ = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] Thus, we have shown that: \[ A^2 - 12A - I = 0 \] ### Step 4: Find \( A^{-1} \) From the equation \( A^2 - 12A - I = 0 \), we can rearrange it to find \( A^{-1} \): \[ A^2 - 12A = I \] Multiplying both sides by \( A^{-1} \): \[ A - 12I = A^{-1} \] Now, we calculate \( 12I \): \[ 12I = 12 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 0 \\ 0 & 12 \end{pmatrix} \] Now, substituting \( A \) and \( 12I \): \[ A^{-1} = A - 12I = \begin{pmatrix} 5 & 3 \\ 12 & 7 \end{pmatrix} - \begin{pmatrix} 12 & 0 \\ 0 & 12 \end{pmatrix} \] Calculating the subtraction: \[ A^{-1} = \begin{pmatrix} 5 - 12 & 3 - 0 \\ 12 - 0 & 7 - 12 \end{pmatrix} = \begin{pmatrix} -7 & 3 \\ 12 & -5 \end{pmatrix} \] Thus, the inverse of \( A \) is: \[ A^{-1} = \begin{pmatrix} -7 & 3 \\ 12 & -5 \end{pmatrix} \] ### Summary of Steps: 1. Calculate \( A^2 \). 2. Calculate \( 12A \). 3. Show that \( A^2 - 12A - I = 0 \). 4. Rearrange to find \( A^{-1} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.

If A=[31-12], show that A^(2)-5A+7I=O. Hence,find A^(-1)

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A=[[3,1-1,2]],I=[[1,00,1]] and O=[[0,00,0]], show that A^(2)-5A+7I=0 Hence find A^(-1)

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[31-12], show that A^(2)-5A+7I_(2)=O

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-FOUR MARK QUESTIONS
  1. a a+b a+2b 10. Using properties of determinants, show that |[a,a+b,a+2...

    Text Solution

    |

  2. The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqr...

    Text Solution

    |

  3. If A=[(5,3),(12,7)], show that A^(2)-12A-I=0. Hence find A^(-1).

    Text Solution

    |

  4. Find the matrix X so that X[(1,2),(5,3)]=[(5,10),(2,0)]

    Text Solution

    |

  5. If A=|1 2 2 2 1 2 2 2 1|, verifty that A^2-4A-5I=0

    Text Solution

    |

  6. Using elementary transformations find the inverse of the matrix A=[(...

    Text Solution

    |

  7. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  8. If A=[(2,-3),(0,1)], find B, such that 4A^(-1)+B=A^(2)

    Text Solution

    |

  9. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  10. Find A^2-5A+6I , if A=[2 0 1 2 1 3 1-1 0]

    Text Solution

    |

  11. If A=[(1,-2,3),(0,-1,4),(-2,2,1)], find (A')^(-1)

    Text Solution

    |

  12. The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and ...

    Text Solution

    |

  13. If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify...

    Text Solution

    |

  14. If A=[{:( 0,-x),(x,0):}].B[{:(0,1),(1,0):}] and x^(2)=-1 , then show ...

    Text Solution

    |

  15. Prove that aI+bA+cA^(2)=A^(3), if A=[(0,1,0),(0,0,1),(a,b,c)]

    Text Solution

    |

  16. If A=[[cos 2 theta, sin 2 theta],[-sin2theta, cos2theta]], find A^2

    Text Solution

    |

  17. If A=[(1,-1),(2,1)], B=[(a,1),(b,-1)] and (A+B)^(2)=A^(2)+B^(2)+2AB, t...

    Text Solution

    |

  18. If A=[(0,2b,c),(a,b,-c),(a,-b,c)], then find the value of a, b and c. ...

    Text Solution

    |

  19. If A=[[a,b],[0,1]] then prove that A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]

    Text Solution

    |

  20. Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k...

    Text Solution

    |