Home
Class 12
MATHS
Find the matrix X so that X[(1,2),(5,3)]...

Find the matrix X so that `X[(1,2),(5,3)]=[(5,10),(2,0)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( X \) such that \[ X \begin{pmatrix} 1 & 2 \\ 5 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 2 & 0 \end{pmatrix}, \] we can follow these steps: ### Step 1: Define the matrices Let \[ A = \begin{pmatrix} 1 & 2 \\ 5 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 10 \\ 2 & 0 \end{pmatrix}. \] ### Step 2: Find the inverse of matrix \( A \) To find \( X \), we need to compute \( A^{-1} \). The formula for the inverse of a 2x2 matrix \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] is given by \[ \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. \] For our matrix \( A \): - \( a = 1, b = 2, c = 5, d = 3 \) First, we calculate the determinant \( \text{det}(A) \): \[ \text{det}(A) = ad - bc = (1)(3) - (2)(5) = 3 - 10 = -7. \] Now, we can find the adjoint of \( A \): \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -5 & 1 \end{pmatrix}. \] Thus, the inverse of \( A \) is: \[ A^{-1} = \frac{1}{-7} \begin{pmatrix} 3 & -2 \\ -5 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{3}{7} & \frac{2}{7} \\ \frac{5}{7} & -\frac{1}{7} \end{pmatrix}. \] ### Step 3: Calculate \( X \) Now, we can find \( X \) using the formula: \[ X = B A^{-1}. \] Substituting the values of \( B \) and \( A^{-1} \): \[ X = \begin{pmatrix} 5 & 10 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} -\frac{3}{7} & \frac{2}{7} \\ \frac{5}{7} & -\frac{1}{7} \end{pmatrix}. \] ### Step 4: Perform the matrix multiplication Now, we perform the multiplication: 1. For the first row, first column: \[ 5 \cdot -\frac{3}{7} + 10 \cdot \frac{5}{7} = -\frac{15}{7} + \frac{50}{7} = \frac{35}{7} = 5. \] 2. For the first row, second column: \[ 5 \cdot \frac{2}{7} + 10 \cdot -\frac{1}{7} = \frac{10}{7} - \frac{10}{7} = 0. \] 3. For the second row, first column: \[ 2 \cdot -\frac{3}{7} + 0 \cdot \frac{5}{7} = -\frac{6}{7} + 0 = -\frac{6}{7}. \] 4. For the second row, second column: \[ 2 \cdot \frac{2}{7} + 0 \cdot -\frac{1}{7} = \frac{4}{7} + 0 = \frac{4}{7}. \] Putting it all together, we have: \[ X = \begin{pmatrix} 5 & 0 \\ -\frac{6}{7} & \frac{4}{7} \end{pmatrix}. \] ### Final Result Thus, the matrix \( X \) is \[ X = \begin{pmatrix} 5 & 0 \\ -\frac{6}{7} & \frac{4}{7} \end{pmatrix}. \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Find the matrix X such that {:((1,2,3),(2,3,2),(1,2,2)):} X = {:((2,2,-5),(-2,-1,4),(1,0,-1)):} .

Find the matrix X so that X[[1,2,34,5,6]]=[[-7,-8,-92,4,6]]

Find the matrix x for which [(3,2),(7,5)]xx[(-1,1),(-2,1)]=[(2,-1),(0,4)]

Find the matrix X for which: [(3, 2), (7, 5)]X[(-1, 1),(-2, 1)]=[(2,-1),( 0, 4)] .

Find the matrix A such that A.[{:(2,3),(4,5):}]=[{:(0,-4),(10," "3):}].

Find the matrix A such that [{:(2,-1),(1,0),(-3,4):}].A=[{:(-1,-8,-10),(1,-2,-5),(9,22,15):}].

Find the inverse of the matrix [{:(-3,2),(5,-3):}] Hence, find the matrix P satisfying the matrix equation : P[{:(-3,2),(5,-3):}]=[{:(1,2),(2,-1):}]

Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

Find the matrix A such that [[2,-1],[1,0],[-3,4]] A=[[-1,-8,-10],[1,-2,-5],[9,22,15]]

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-FOUR MARK QUESTIONS
  1. The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqr...

    Text Solution

    |

  2. If A=[(5,3),(12,7)], show that A^(2)-12A-I=0. Hence find A^(-1).

    Text Solution

    |

  3. Find the matrix X so that X[(1,2),(5,3)]=[(5,10),(2,0)]

    Text Solution

    |

  4. If A=|1 2 2 2 1 2 2 2 1|, verifty that A^2-4A-5I=0

    Text Solution

    |

  5. Using elementary transformations find the inverse of the matrix A=[(...

    Text Solution

    |

  6. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  7. If A=[(2,-3),(0,1)], find B, such that 4A^(-1)+B=A^(2)

    Text Solution

    |

  8. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  9. Find A^2-5A+6I , if A=[2 0 1 2 1 3 1-1 0]

    Text Solution

    |

  10. If A=[(1,-2,3),(0,-1,4),(-2,2,1)], find (A')^(-1)

    Text Solution

    |

  11. The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and ...

    Text Solution

    |

  12. If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify...

    Text Solution

    |

  13. If A=[{:( 0,-x),(x,0):}].B[{:(0,1),(1,0):}] and x^(2)=-1 , then show ...

    Text Solution

    |

  14. Prove that aI+bA+cA^(2)=A^(3), if A=[(0,1,0),(0,0,1),(a,b,c)]

    Text Solution

    |

  15. If A=[[cos 2 theta, sin 2 theta],[-sin2theta, cos2theta]], find A^2

    Text Solution

    |

  16. If A=[(1,-1),(2,1)], B=[(a,1),(b,-1)] and (A+B)^(2)=A^(2)+B^(2)+2AB, t...

    Text Solution

    |

  17. If A=[(0,2b,c),(a,b,-c),(a,-b,c)], then find the value of a, b and c. ...

    Text Solution

    |

  18. If A=[[a,b],[0,1]] then prove that A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]

    Text Solution

    |

  19. Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k...

    Text Solution

    |

  20. If x,y and zinR, and Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x...

    Text Solution

    |