Home
Class 12
MATHS
Using elementary transformations find th...

Using elementary transformations find the inverse of the matrix
`A=[(2,1),(4,7)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & 1 \\ 4 & 7 \end{pmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations to transform \( A \) into \( I \). ### Step 1: Set up the augmented matrix We start with the augmented matrix \( [A | I] \): \[ \begin{pmatrix} 2 & 1 & | & 1 & 0 \\ 4 & 7 & | & 0 & 1 \end{pmatrix} \] ### Step 2: Make the leading coefficient of the first row equal to 1 We can achieve this by dividing the first row by 2: \[ R_1 \rightarrow \frac{1}{2} R_1 \] This gives us: \[ \begin{pmatrix} 1 & \frac{1}{2} & | & \frac{1}{2} & 0 \\ 4 & 7 & | & 0 & 1 \end{pmatrix} \] ### Step 3: Eliminate the first column of the second row Next, we will eliminate the 4 in the second row by replacing \( R_2 \) with \( R_2 - 4R_1 \): \[ R_2 \rightarrow R_2 - 4R_1 \] Calculating this gives: \[ R_2 = (4 - 4 \cdot 1, 7 - 4 \cdot \frac{1}{2}, 0 - 4 \cdot \frac{1}{2}, 1 - 4 \cdot 0) = (0, 5 - 2, -2, 1) \] So we have: \[ \begin{pmatrix} 1 & \frac{1}{2} & | & \frac{1}{2} & 0 \\ 0 & 5 & | & -2 & 1 \end{pmatrix} \] ### Step 4: Make the leading coefficient of the second row equal to 1 Now, we divide the second row by 5: \[ R_2 \rightarrow \frac{1}{5} R_2 \] This gives us: \[ \begin{pmatrix} 1 & \frac{1}{2} & | & \frac{1}{2} & 0 \\ 0 & 1 & | & -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \] ### Step 5: Eliminate the second column of the first row Next, we eliminate the \( \frac{1}{2} \) in the first row by replacing \( R_1 \) with \( R_1 - \frac{1}{2} R_2 \): \[ R_1 \rightarrow R_1 - \frac{1}{2} R_2 \] Calculating this gives: \[ R_1 = (1 - 0, \frac{1}{2} - \frac{1}{2}, \frac{1}{2} - \frac{1}{2} \cdot -\frac{2}{5}, 0 - \frac{1}{2} \cdot \frac{1}{5}) = (1, 0, \frac{1}{2} + \frac{1}{5}, -\frac{1}{10}) \] So we have: \[ \begin{pmatrix} 1 & 0 & | & \frac{5}{10} + \frac{2}{10} & -\frac{1}{10} \\ 0 & 1 & | & -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} 1 & 0 & | & \frac{7}{10} & -\frac{1}{10} \\ 0 & 1 & | & -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \] ### Step 6: Write down the inverse The right side of the augmented matrix now represents the inverse of \( A \): \[ A^{-1} = \begin{pmatrix} \frac{7}{10} & -\frac{1}{10} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{7}{10} & -\frac{1}{10} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations,find the inverse of the matrix [[2,17,4]]

Using elementary transformations,find the inverse of the matrix ,[[2,11,1]]

Using elementary transformations,find the inverse of the matrix ,[[2,14,2]]

Using elementary transformations,find the inverse of the matrix [[2,35,7]]

Using elementary transformation, find the inverse of the given matrix.

Using elementary transformations,find the inverse of the matrix [[1,-12,3]]

Using elementary transformations,find the inverse of the matrix [[3,15,2]]

Using elementary tansformations, find the inverse of the matrix A=[(8,4,3),(2,1,1),(1,2,2)]

Using elementary transformations,find the inverse of the matrix ,[[1,32,7]]

Using elementary transformations,find the inverse of the matrix [[6,-3-2,1]]

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-FOUR MARK QUESTIONS
  1. Find the matrix X so that X[(1,2),(5,3)]=[(5,10),(2,0)]

    Text Solution

    |

  2. If A=|1 2 2 2 1 2 2 2 1|, verifty that A^2-4A-5I=0

    Text Solution

    |

  3. Using elementary transformations find the inverse of the matrix A=[(...

    Text Solution

    |

  4. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  5. If A=[(2,-3),(0,1)], find B, such that 4A^(-1)+B=A^(2)

    Text Solution

    |

  6. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  7. Find A^2-5A+6I , if A=[2 0 1 2 1 3 1-1 0]

    Text Solution

    |

  8. If A=[(1,-2,3),(0,-1,4),(-2,2,1)], find (A')^(-1)

    Text Solution

    |

  9. The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and ...

    Text Solution

    |

  10. If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify...

    Text Solution

    |

  11. If A=[{:( 0,-x),(x,0):}].B[{:(0,1),(1,0):}] and x^(2)=-1 , then show ...

    Text Solution

    |

  12. Prove that aI+bA+cA^(2)=A^(3), if A=[(0,1,0),(0,0,1),(a,b,c)]

    Text Solution

    |

  13. If A=[[cos 2 theta, sin 2 theta],[-sin2theta, cos2theta]], find A^2

    Text Solution

    |

  14. If A=[(1,-1),(2,1)], B=[(a,1),(b,-1)] and (A+B)^(2)=A^(2)+B^(2)+2AB, t...

    Text Solution

    |

  15. If A=[(0,2b,c),(a,b,-c),(a,-b,c)], then find the value of a, b and c. ...

    Text Solution

    |

  16. If A=[[a,b],[0,1]] then prove that A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]

    Text Solution

    |

  17. Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k...

    Text Solution

    |

  18. If x,y and zinR, and Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x...

    Text Solution

    |

  19. If |(1,a^2,a^4),(1,b^2,b^4),(1,c^2,c^4)|=k|(1,1,1),(a,b,c),(a^2,b^2,c^...

    Text Solution

    |

  20. Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

    Text Solution

    |