Home
Class 12
MATHS
If A=[(2,-3),(0,1)], find B, such that 4...

If `A=[(2,-3),(0,1)]`, find B, such that `4A^(-1)+B=A^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( B \) such that: \[ 4A^{-1} + B = A^2 \] where \( A = \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + (-3) \cdot 0 = 4 \) - First row, second column: \( 2 \cdot (-3) + (-3) \cdot 1 = -6 - 3 = -9 \) - Second row, first column: \( 0 \cdot 2 + 1 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot (-3) + 1 \cdot 1 = 1 \) Thus, \[ A^2 = \begin{pmatrix} 4 & -9 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^{-1} \) To find \( A^{-1} \), we first need to calculate the determinant of \( A \): \[ \text{det}(A) = 2 \cdot 1 - 0 \cdot (-3) = 2 \] Next, we find the adjoint of \( A \): \[ \text{adj}(A) = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix} \] Now, we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ \frac{3}{2} & 1 \end{pmatrix} \] ### Step 3: Calculate \( 4A^{-1} \) Now, we calculate \( 4A^{-1} \): \[ 4A^{-1} = 4 \cdot \begin{pmatrix} \frac{1}{2} & 0 \\ \frac{3}{2} & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 6 & 4 \end{pmatrix} \] ### Step 4: Solve for \( B \) Now we substitute \( A^2 \) and \( 4A^{-1} \) into the equation \( 4A^{-1} + B = A^2 \): \[ B = A^2 - 4A^{-1} = \begin{pmatrix} 4 & -9 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 6 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 4 - 2 = 2 \) - First row, second column: \( -9 - 0 = -9 \) - Second row, first column: \( 0 - 6 = -6 \) - Second row, second column: \( 1 - 4 = -3 \) Thus, \[ B = \begin{pmatrix} 2 & -9 \\ -6 & -3 \end{pmatrix} \] ### Final Answer The required matrix \( B \) is: \[ B = \begin{pmatrix} 2 & -9 \\ -6 & -3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Given A=[(1,1,1),(2,4,1),(2,3,1)], B=[(2,3),(3,4)]. Find P such that BPA= [(1,0,1),(0,1,0)]

If A=[(2,2),(-3,1),(4,0)],B=[(6,2),(1,3),(0,4)], find the matrix C such that A+B+C is a zero

If A=[(2, 2), (-3, 1), (4, 0)], B=[(6, 2), (1, 3), (0, 4)], find the matrix C such that A + B + C is zero matrix.

If A=[(1,4),(3,2),(2,5)], B=[(-1,-2),(0,5),(3,1)] , find the matrix D such that A+B-D=0 .

If A=[[3,0],[0,4]],B=[[2],[1]] , then find matrix X such that A^(-1)X=B

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A=[{:(2,-3),(4," "5):}]" and "B=[{:(-1,2),(0,3):}] , find a matrix X such that A+2B+X=O.

if A[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find A matrix C such that 2A-B+3c is a unit matrix.

If A=[(2, 3),( 5 ,7)] , B=[(-1 ,0, 2),( 3, 4, 1)] , C=[(-1, 2 ,3),( 2 ,1, 0)] , find A+B and B+C (ii) 2B+3A and 3C-4B .

Given A=[(1,2,-3),(5,0,2),(1,-1,1)] and b=[(3,-1,2),(4,2,5),(2,0,3)] , find the matrix C such that A+C=B .

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-FOUR MARK QUESTIONS
  1. Using elementary transformations find the inverse of the matrix A=[(...

    Text Solution

    |

  2. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  3. If A=[(2,-3),(0,1)], find B, such that 4A^(-1)+B=A^(2)

    Text Solution

    |

  4. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  5. Find A^2-5A+6I , if A=[2 0 1 2 1 3 1-1 0]

    Text Solution

    |

  6. If A=[(1,-2,3),(0,-1,4),(-2,2,1)], find (A')^(-1)

    Text Solution

    |

  7. The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and ...

    Text Solution

    |

  8. If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify...

    Text Solution

    |

  9. If A=[{:( 0,-x),(x,0):}].B[{:(0,1),(1,0):}] and x^(2)=-1 , then show ...

    Text Solution

    |

  10. Prove that aI+bA+cA^(2)=A^(3), if A=[(0,1,0),(0,0,1),(a,b,c)]

    Text Solution

    |

  11. If A=[[cos 2 theta, sin 2 theta],[-sin2theta, cos2theta]], find A^2

    Text Solution

    |

  12. If A=[(1,-1),(2,1)], B=[(a,1),(b,-1)] and (A+B)^(2)=A^(2)+B^(2)+2AB, t...

    Text Solution

    |

  13. If A=[(0,2b,c),(a,b,-c),(a,-b,c)], then find the value of a, b and c. ...

    Text Solution

    |

  14. If A=[[a,b],[0,1]] then prove that A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]

    Text Solution

    |

  15. Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k...

    Text Solution

    |

  16. If x,y and zinR, and Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x...

    Text Solution

    |

  17. If |(1,a^2,a^4),(1,b^2,b^4),(1,c^2,c^4)|=k|(1,1,1),(a,b,c),(a^2,b^2,c^...

    Text Solution

    |

  18. Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

    Text Solution

    |

  19. |(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)...

    Text Solution

    |

  20. Using properties of determinants, prove that following: |"a"+"b"+2...

    Text Solution

    |