Home
Class 12
MATHS
If A=[(1,-2,3),(0,-1,4),(-2,2,1)], find ...

If `A=[(1,-2,3),(0,-1,4),(-2,2,1)]`, find `(A')^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \((A')^{-1}\) where \(A' = A^T\) (the transpose of matrix \(A\)), we will follow these steps: 1. **Find the transpose of matrix \(A\)**. 2. **Calculate the cofactor matrix of \(A'\)**. 3. **Find the adjoint of \(A'\)**. 4. **Calculate the determinant of \(A'\)**. 5. **Use the formula for the inverse of a matrix**. Let's go through these steps in detail. ### Step 1: Find the Transpose of Matrix \(A\) Given: \[ A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{bmatrix} \] The transpose \(A'\) is obtained by swapping rows and columns: \[ A' = \begin{bmatrix} 1 & 0 & -2 \\ -2 & -1 & 2 \\ 3 & 4 & 1 \end{bmatrix} \] ### Step 2: Calculate the Cofactor Matrix of \(A'\) The cofactor \(C_{ij}\) is calculated using the formula: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \(M_{ij}\) is the minor of the element in the \(i\)-th row and \(j\)-th column. Let's calculate the cofactors: - \(C_{11} = (-1)^{1+1} \cdot \text{det}\begin{bmatrix}-1 & 2 \\ 4 & 1\end{bmatrix} = 1 \cdot (-1 \cdot 1 - 4 \cdot 2) = -9\) - \(C_{12} = (-1)^{1+2} \cdot \text{det}\begin{bmatrix}0 & 2 \\ 3 & 1\end{bmatrix} = -1 \cdot (0 \cdot 1 - 3 \cdot 2) = 6\) - \(C_{13} = (-1)^{1+3} \cdot \text{det}\begin{bmatrix}0 & -1 \\ -2 & 2\end{bmatrix} = 1 \cdot (0 \cdot 2 - (-1) \cdot (-2)) = -2\) Continuing this process for all elements, we find the cofactor matrix: \[ C = \begin{bmatrix} -9 & 6 & -2 \\ -8 & 7 & -4 \\ -2 & 2 & -1 \end{bmatrix} \] ### Step 3: Find the Adjoint of \(A'\) The adjoint of a matrix is the transpose of the cofactor matrix: \[ \text{adj}(A') = C^T = \begin{bmatrix} -9 & -8 & -2 \\ 6 & 7 & 2 \\ -2 & -4 & -1 \end{bmatrix} \] ### Step 4: Calculate the Determinant of \(A'\) The determinant of a \(3 \times 3\) matrix can be calculated using the formula: \[ \text{det}(A') = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \(A'\): \[ \text{det}(A') = 1 \cdot (-1 \cdot 1 - 2 \cdot 4) - 0 + (-2) \cdot (0 - (-1) \cdot -2) = 1 \cdot (-1 - 8) - 0 - 2 \cdot 0 = -9 \] ### Step 5: Use the Formula for the Inverse of a Matrix The inverse of a matrix is given by: \[ (A')^{-1} = \frac{1}{\text{det}(A')} \cdot \text{adj}(A') \] Substituting the values we found: \[ (A')^{-1} = \frac{1}{-9} \cdot \begin{bmatrix} -9 & -8 & -2 \\ 6 & 7 & 2 \\ -2 & -4 & -1 \end{bmatrix} \] This simplifies to: \[ (A')^{-1} = \begin{bmatrix} 1 & \frac{8}{9} & \frac{2}{9} \\ -\frac{2}{3} & -\frac{7}{9} & -\frac{2}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{1}{9} \end{bmatrix} \] ### Final Answer \[ (A')^{-1} = \begin{bmatrix} 1 & \frac{8}{9} & \frac{2}{9} \\ -\frac{2}{3} & -\frac{7}{9} & -\frac{2}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{1}{9} \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,-2,3],[0,-1,4],[-2,2,1]] , then find (A')^(-1)

If A=[{:(3,2,1),(0,-1,-2),(-3,4,2):}] , find A^(-1)

If A=[[1,-2,3],[0,-1,4],[-2,2,1]], then find |A| .

If A = [(0,4,3),(1,-3,-3),(-1,4,4)] , then find A^(2) and hence find A^(-1)

If A = [(1,0,-4),(0,-1,2),(-1,2,1)] and B= [(5,8,4),(2,3,2),(1,2,1)] then find AB .

Find the inverse of each of the matrices given below : Compute (AB)^(-1) when A=[(1,1,2),(0,2,-3),(3,-2,4)] and B^(-1)=[(1,2,0),(0,3,-1),(1,0,2)] . Find A^(-1).

If A=[(1,2,3),(-1,0,2),(1,-8,-1)],B=[(4,5,6),(-1,0,1),(2,1,2)],C=[(-1,-2,1),(-1,2,3),(-1,-2,2)] , find (i) 2B-3C (ii) A-2B+3C .

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)] , then find (AB)^(-1)

Let A+2B={:[(3,2,-3),(1,0,4),(3,1,2)]:}and-A-B={:[(1,0,3),(-1,4,1),(3,2,1)]:} . Find A and B.

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-FOUR MARK QUESTIONS
  1. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  2. Find A^2-5A+6I , if A=[2 0 1 2 1 3 1-1 0]

    Text Solution

    |

  3. If A=[(1,-2,3),(0,-1,4),(-2,2,1)], find (A')^(-1)

    Text Solution

    |

  4. The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and ...

    Text Solution

    |

  5. If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify...

    Text Solution

    |

  6. If A=[{:( 0,-x),(x,0):}].B[{:(0,1),(1,0):}] and x^(2)=-1 , then show ...

    Text Solution

    |

  7. Prove that aI+bA+cA^(2)=A^(3), if A=[(0,1,0),(0,0,1),(a,b,c)]

    Text Solution

    |

  8. If A=[[cos 2 theta, sin 2 theta],[-sin2theta, cos2theta]], find A^2

    Text Solution

    |

  9. If A=[(1,-1),(2,1)], B=[(a,1),(b,-1)] and (A+B)^(2)=A^(2)+B^(2)+2AB, t...

    Text Solution

    |

  10. If A=[(0,2b,c),(a,b,-c),(a,-b,c)], then find the value of a, b and c. ...

    Text Solution

    |

  11. If A=[[a,b],[0,1]] then prove that A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]

    Text Solution

    |

  12. Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k...

    Text Solution

    |

  13. If x,y and zinR, and Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x...

    Text Solution

    |

  14. If |(1,a^2,a^4),(1,b^2,b^4),(1,c^2,c^4)|=k|(1,1,1),(a,b,c),(a^2,b^2,c^...

    Text Solution

    |

  15. Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

    Text Solution

    |

  16. |(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)...

    Text Solution

    |

  17. Using properties of determinants, prove that following: |"a"+"b"+2...

    Text Solution

    |

  18. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  19. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  20. |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(3abc-a^(3)-b^(3)-c^(3))

    Text Solution

    |