Home
Class 12
MATHS
If A=[(0,2b,c),(a,b,-c),(a,-b,c)], then ...

If `A=[(0,2b,c),(a,b,-c),(a,-b,c)]`, then find the value of a, b and c. Such that `A^(T)A=I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \), \( b \), and \( c \) such that the matrix \( A \) satisfies the condition \( A^T A = I \), where \( I \) is the identity matrix. Given: \[ A = \begin{pmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{pmatrix} \] ### Step 1: Calculate \( A^T \) The transpose of matrix \( A \) is obtained by swapping rows and columns: \[ A^T = \begin{pmatrix} 0 & a & a \\ 2b & b & -b \\ c & -c & c \end{pmatrix} \] ### Step 2: Calculate \( A^T A \) Now, we will multiply \( A^T \) with \( A \): \[ A^T A = \begin{pmatrix} 0 & a & a \\ 2b & b & -b \\ c & -c & c \end{pmatrix} \begin{pmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{pmatrix} \] ### Step 3: Compute the elements of \( A^T A \) We will compute each element of the resulting matrix: 1. **First Row**: - \( (0 \cdot 0 + a \cdot a + a \cdot a) = 2a^2 \) - \( (0 \cdot 2b + a \cdot b + a \cdot -b) = 0 \) - \( (0 \cdot c + a \cdot -c + a \cdot c) = 0 \) 2. **Second Row**: - \( (2b \cdot 0 + b \cdot a + -b \cdot a) = 0 \) - \( (2b \cdot 2b + b \cdot b + -b \cdot -b) = 6b^2 \) - \( (2b \cdot c + b \cdot -c + -b \cdot c) = 0 \) 3. **Third Row**: - \( (c \cdot 0 + -c \cdot a + c \cdot a) = 0 \) - \( (c \cdot 2b + -c \cdot b + c \cdot -b) = 0 \) - \( (c \cdot c + -c \cdot -c + c \cdot c) = 3c^2 \) Putting it all together, we have: \[ A^T A = \begin{pmatrix} 2a^2 & 0 & 0 \\ 0 & 6b^2 & 0 \\ 0 & 0 & 3c^2 \end{pmatrix} \] ### Step 4: Set \( A^T A = I \) We know that \( A^T A \) must equal the identity matrix \( I \): \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] This gives us the following equations: 1. \( 2a^2 = 1 \) 2. \( 6b^2 = 1 \) 3. \( 3c^2 = 1 \) ### Step 5: Solve for \( a \), \( b \), and \( c \) 1. From \( 2a^2 = 1 \): \[ a^2 = \frac{1}{2} \implies a = \pm \frac{1}{\sqrt{2}} \] 2. From \( 6b^2 = 1 \): \[ b^2 = \frac{1}{6} \implies b = \pm \frac{1}{\sqrt{6}} \] 3. From \( 3c^2 = 1 \): \[ c^2 = \frac{1}{3} \implies c = \pm \frac{1}{\sqrt{3}} \] ### Final Values Thus, the values of \( a \), \( b \), and \( c \) are: \[ a = \pm \frac{1}{\sqrt{2}}, \quad b = \pm \frac{1}{\sqrt{6}}, \quad c = \pm \frac{1}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of a^(3)+b^(3)+c^(3).

Let A = [{:(0, 2b , c),(a, b, -c),(a, -b, c):}] be an orthogonal matrix, then the values of a, b, c, are related with

If a = 2 , b = -2 and c = 2 , then find the value of a^2b + b^2c + c^2a

If A=[[a,b] , [c,d]] and B=[[a',b] , [c',d']] then find the value of A-B

If a b c=0 , then find the value of {(x^a)^b}^c (a)1 (b) a (c)b (d) c

If in triangle A B C ,=a^2-(b-c)^2 , then find the value of tanAdot

If a, b, and c are integers, then number of matrices A=[(a,b,c),(b,c,a),(c,a,b)] which are possible such that A A^(T)=I is _______.

If [a b c]=2 , then find the value of [(a+2b-c)(a-b)(a-b-c)] .

5.If a.b =b .c=c.a=0 then the value of [a,b,c] is

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-FOUR MARK QUESTIONS
  1. If A=[[cos 2 theta, sin 2 theta],[-sin2theta, cos2theta]], find A^2

    Text Solution

    |

  2. If A=[(1,-1),(2,1)], B=[(a,1),(b,-1)] and (A+B)^(2)=A^(2)+B^(2)+2AB, t...

    Text Solution

    |

  3. If A=[(0,2b,c),(a,b,-c),(a,-b,c)], then find the value of a, b and c. ...

    Text Solution

    |

  4. If A=[[a,b],[0,1]] then prove that A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]

    Text Solution

    |

  5. Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k...

    Text Solution

    |

  6. If x,y and zinR, and Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x...

    Text Solution

    |

  7. If |(1,a^2,a^4),(1,b^2,b^4),(1,c^2,c^4)|=k|(1,1,1),(a,b,c),(a^2,b^2,c^...

    Text Solution

    |

  8. Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

    Text Solution

    |

  9. |(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)...

    Text Solution

    |

  10. Using properties of determinants, prove that following: |"a"+"b"+2...

    Text Solution

    |

  11. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  12. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  13. |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(3abc-a^(3)-b^(3)-c^(3))

    Text Solution

    |

  14. Prove that | ((b+c)^2, a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2)|=2...

    Text Solution

    |

  15. Given A=[(0,-1,2),(2,-2,0)]andB-[(0,1),(1,0),(1,1)]. Find the product ...

    Text Solution

    |

  16. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |

  17. FInd x when |[x+a, a^2, a^3] , [x+b, b^2, b^3] , [x+c, c^2, c^3]|=0 wh...

    Text Solution

    |

  18. Express the matrix [3-2-4 3-2-5-1 1 2] as the sum of a symmetric and s...

    Text Solution

    |

  19. If x=-4 is a root of a Delta=|(x,2,3),(1,x,1),(3,2,x)|=0, then find th...

    Text Solution

    |

  20. Using properties of determinants. Find the value of 'x' |(4-x,4+x,4+...

    Text Solution

    |