Home
Class 12
MATHS
Find the value of k, if: |(a+b,b+c,c+a),...

Find the value of k, if: `|(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k|(a,b,c),(b,c,a),(c,a,b)|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the equation \[ |(a+b, b+c, c+a), (b+c, c+a, a+b), (c+a, a+b, b+c)| = k |(a, b, c), (b, c, a), (c, a, b)| \] we will follow these steps: ### Step 1: Write the Determinant We start with the determinant on the left-hand side: \[ D_1 = |(a+b, b+c, c+a), (b+c, c+a, a+b), (c+a, a+b, b+c)| \] ### Step 2: Simplify the Determinant We can simplify the determinant \( D_1 \) by performing column operations. Let's add all three columns together: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D_1 = |(2(a+b+c), b+c, c+a), (2(a+b+c), c+a, a+b), (2(a+b+c), a+b, b+c)| \] ### Step 3: Factor Out Common Terms Since the first column has \( 2(a+b+c) \) in all rows, we can factor this out: \[ D_1 = 2(a+b+c) |(1, b+c, c+a), (1, c+a, a+b), (1, a+b, b+c)| \] ### Step 4: Further Simplification Now we can simplify the determinant further. Notice that we can subtract the first column from the second and third columns: \[ C_2 \rightarrow C_2 - C_1 \] \[ C_3 \rightarrow C_3 - C_1 \] This leads to: \[ D_1 = 2(a+b+c) |(1, b+c-1, c+a-1), (1, c+a-1, a+b-1), (1, a+b-1, b+c-1)| \] ### Step 5: Recognize the Structure The determinant now has a structure that can be recognized as a determinant of a matrix involving \( a, b, c \). We can express this determinant in terms of \( |(a, b, c), (b, c, a), (c, a, b)| \). ### Step 6: Relate to the Right-Hand Side Now we can relate this determinant back to the right-hand side of our original equation: \[ D_1 = k |(a, b, c), (b, c, a), (c, a, b)| \] ### Step 7: Solve for \( k \) From our previous steps, we see that: \[ D_1 = 2(a+b+c) \cdot \text{(some determinant)} \] Thus, we can equate: \[ 2(a+b+c) \cdot \text{(some determinant)} = k \cdot \text{(some determinant)} \] This implies: \[ k = 2(a+b+c) \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

The value of |{:(a- b, b- c, c - a),(b-c,c-a,a-b),(c-a,a-b,b-c):}| =

Prove that : |{:(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c):}|=2|{:(a,b,c),(b,c,a),(c,a,b):}| .

The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-b)

The value of Delta = |(b -c,c -a,a -b),(c -a,a -b,b -c),(a -b,b -c,c -a)| is

What is the value of the determinant |(a-b,b+c,a),(b-c,c+a,b),(c-a,a+b,c)| ?

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-FOUR MARK QUESTIONS
  1. If A=[(0,2b,c),(a,b,-c),(a,-b,c)], then find the value of a, b and c. ...

    Text Solution

    |

  2. If A=[[a,b],[0,1]] then prove that A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]

    Text Solution

    |

  3. Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k...

    Text Solution

    |

  4. If x,y and zinR, and Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x...

    Text Solution

    |

  5. If |(1,a^2,a^4),(1,b^2,b^4),(1,c^2,c^4)|=k|(1,1,1),(a,b,c),(a^2,b^2,c^...

    Text Solution

    |

  6. Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

    Text Solution

    |

  7. |(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)...

    Text Solution

    |

  8. Using properties of determinants, prove that following: |"a"+"b"+2...

    Text Solution

    |

  9. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  10. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  11. |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(3abc-a^(3)-b^(3)-c^(3))

    Text Solution

    |

  12. Prove that | ((b+c)^2, a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2)|=2...

    Text Solution

    |

  13. Given A=[(0,-1,2),(2,-2,0)]andB-[(0,1),(1,0),(1,1)]. Find the product ...

    Text Solution

    |

  14. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |

  15. FInd x when |[x+a, a^2, a^3] , [x+b, b^2, b^3] , [x+c, c^2, c^3]|=0 wh...

    Text Solution

    |

  16. Express the matrix [3-2-4 3-2-5-1 1 2] as the sum of a symmetric and s...

    Text Solution

    |

  17. If x=-4 is a root of a Delta=|(x,2,3),(1,x,1),(3,2,x)|=0, then find th...

    Text Solution

    |

  18. Using properties of determinants. Find the value of 'x' |(4-x,4+x,4+...

    Text Solution

    |

  19. prove that |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(1-x),x(x-1)(x-2),x(x+1)(...

    Text Solution

    |

  20. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |