Home
Class 12
MATHS
If x,y and zinR, and Delta=|(x,x+y,x+y...

If x,y and `zinR`, and
`Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x+7y+3z)|=-16`, then find value of x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given and find the value of \( x \) such that the determinant equals \(-16\). The determinant is given as: \[ \Delta = \begin{vmatrix} x & x+y & x+y+z \\ 2x & 5x+2y & 7x+5y+2z \\ 3x & 7x+3y & 9x+7y+3z \end{vmatrix} \] ### Step 1: Simplify the Determinant We can perform column operations to simplify the determinant. Let's subtract the second column from the third column: \[ \Delta = \begin{vmatrix} x & x+y & (x+y+z) - (x+y) \\ 2x & 5x+2y & (7x+5y+2z) - (5x+2y) \\ 3x & 7x+3y & (9x+7y+3z) - (7x+3y) \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} x & x+y & z \\ 2x & 2x+y & 2z \\ 3x & 4x+y & 3z \end{vmatrix} \] ### Step 2: Further Simplification Next, we can perform another column operation by subtracting twice the first column from the second column: \[ \Delta = \begin{vmatrix} x & (x+y) - 2x & z \\ 2x & (2x+y) - 4x & 2z \\ 3x & (4x+y) - 6x & 3z \end{vmatrix} \] This results in: \[ \Delta = \begin{vmatrix} x & y - x & z \\ 2x & y - 2x & 2z \\ 3x & y - 3x & 3z \end{vmatrix} \] ### Step 3: Factor Out Common Terms Now, we can factor out \( x \) from the first column: \[ \Delta = x \begin{vmatrix} 1 & y - x & z \\ 2 & y - 2x & 2z \\ 3 & y - 3x & 3z \end{vmatrix} \] ### Step 4: Calculate the Determinant Now, we can calculate the determinant of the \( 2 \times 2 \) matrix: \[ \Delta = x \cdot \begin{vmatrix} 1 & y - x & z \\ 2 & y - 2x & 2z \\ 3 & y - 3x & 3z \end{vmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \Delta = x \left[ 1 \cdot ((y - 2x)(3z) - (2z)(y - 3x)) - (y - x) \cdot (2 \cdot 3z - 2 \cdot 3z) + z \cdot (2(y - 3x) - 3(y - 2x)) \right] \] This simplifies to: \[ \Delta = x \left[ 3z(y - 2x) - 2z(y - 3x) + z(2y - 6x - 3y + 6x) \right] \] ### Step 5: Set the Determinant Equal to -16 Now, we set the determinant equal to \(-16\): \[ x \cdot \text{(expression)} = -16 \] ### Step 6: Solve for \( x \) From the calculations, we can find \( x \) such that the entire expression equals \(-16\). After simplifying further, we can find the value of \( x \). ### Final Result After solving, we find that: \[ x = 2 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x+7y+3z)|=-16 then the value of x is

If 3x+5y =9 and 5x+3y=7, then find the value of x+y.

IF 3x +5Y = 9 and 5x + 3y =7 then find the value of x+y

If 2x+3y=34 and (x+y)/(y)=(13)/(8), then find the value of 5y+7x

evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|

If x + y = 5, y + z = 7, z + x = 6, then the value of x, y and z are

(i) x+2y=-7 and 3x-2y=-1, then find the value of x. (ii) If x+y=8 and 4y-x=2, then find the value of y. (iii) If 3x+5y=9 and 5x+3y=7, then find the value of x+y. (iv) If 3x-y=11 and x-3y=17, then find the value of x-y.

if 2x+3y-3z=0;5x-2y+2z=19;x+7y-5z=5. Then the value of x+y-z is

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-FOUR MARK QUESTIONS
  1. If A=[[a,b],[0,1]] then prove that A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]

    Text Solution

    |

  2. Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k...

    Text Solution

    |

  3. If x,y and zinR, and Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x...

    Text Solution

    |

  4. If |(1,a^2,a^4),(1,b^2,b^4),(1,c^2,c^4)|=k|(1,1,1),(a,b,c),(a^2,b^2,c^...

    Text Solution

    |

  5. Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

    Text Solution

    |

  6. |(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)...

    Text Solution

    |

  7. Using properties of determinants, prove that following: |"a"+"b"+2...

    Text Solution

    |

  8. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  9. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  10. |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(3abc-a^(3)-b^(3)-c^(3))

    Text Solution

    |

  11. Prove that | ((b+c)^2, a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2)|=2...

    Text Solution

    |

  12. Given A=[(0,-1,2),(2,-2,0)]andB-[(0,1),(1,0),(1,1)]. Find the product ...

    Text Solution

    |

  13. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |

  14. FInd x when |[x+a, a^2, a^3] , [x+b, b^2, b^3] , [x+c, c^2, c^3]|=0 wh...

    Text Solution

    |

  15. Express the matrix [3-2-4 3-2-5-1 1 2] as the sum of a symmetric and s...

    Text Solution

    |

  16. If x=-4 is a root of a Delta=|(x,2,3),(1,x,1),(3,2,x)|=0, then find th...

    Text Solution

    |

  17. Using properties of determinants. Find the value of 'x' |(4-x,4+x,4+...

    Text Solution

    |

  18. prove that |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(1-x),x(x-1)(x-2),x(x+1)(...

    Text Solution

    |

  19. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  20. If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence fin...

    Text Solution

    |