Home
Class 12
MATHS
Given A=[(0,-1,2),(2,-2,0)]andB-[(0,1),(...

Given `A=[(0,-1,2),(2,-2,0)]andB-[(0,1),(1,0),(1,1)]`. Find the product AB and also find `(AB)^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of matrices \( A \) and \( B \), and then find the inverse of the resulting matrix \( AB \). ### Step 1: Define the matrices Let: \[ A = \begin{pmatrix} 0 & -1 & 2 \\ 2 & -2 & 0 \end{pmatrix} \] \[ B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \] ### Step 2: Multiply matrices \( A \) and \( B \) To find the product \( AB \), we perform matrix multiplication. The resulting matrix will be a \( 2 \times 2 \) matrix since \( A \) is \( 2 \times 3 \) and \( B \) is \( 3 \times 2 \). The element in the first row and first column of \( AB \) is calculated as: \[ (0 \cdot 0) + (-1 \cdot 1) + (2 \cdot 1) = 0 - 1 + 2 = 1 \] The element in the first row and second column of \( AB \) is: \[ (0 \cdot 1) + (-1 \cdot 0) + (2 \cdot 1) = 0 + 0 + 2 = 2 \] The element in the second row and first column of \( AB \) is: \[ (2 \cdot 0) + (-2 \cdot 1) + (0 \cdot 1) = 0 - 2 + 0 = -2 \] The element in the second row and second column of \( AB \) is: \[ (2 \cdot 1) + (-2 \cdot 0) + (0 \cdot 1) = 2 + 0 + 0 = 2 \] Thus, the product \( AB \) is: \[ AB = \begin{pmatrix} 1 & 2 \\ -2 & 2 \end{pmatrix} \] ### Step 3: Find the inverse of matrix \( AB \) To find the inverse of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), we use the formula: \[ (AB)^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( AB = \begin{pmatrix} 1 & 2 \\ -2 & 2 \end{pmatrix} \): - \( a = 1 \) - \( b = 2 \) - \( c = -2 \) - \( d = 2 \) First, we calculate the determinant: \[ \text{det}(AB) = ad - bc = (1)(2) - (2)(-2) = 2 + 4 = 6 \] Now we can find the inverse: \[ (AB)^{-1} = \frac{1}{6} \begin{pmatrix} 2 & -2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{6} & \frac{-2}{6} \\ \frac{2}{6} & \frac{1}{6} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{6} \end{pmatrix} \] ### Final Result The product \( AB \) is: \[ AB = \begin{pmatrix} 1 & 2 \\ -2 & 2 \end{pmatrix} \] And the inverse \( (AB)^{-1} \) is: \[ (AB)^{-1} = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{6} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

Given A=[{:(1,0),(0,-1):}] and B=[{:(0,1),(1,0):}] Write the value of AB.

If A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] , then AB will be

Let A=[(1,2,3),(2,3,4),(-1,1,2)] and B=[(0,2,-1),(0,3,4),(0,-2,-3)] Find AB and BA ?

If A={:[(0,-1),(1,0)]:}andB={:[(-1,0),(3,2)]:} , then AB^(2) =

If A = [(2,0,1),(-1,1,5)] and B = [(-1,1,0),(0,1,-2)] then find AB'

Let A={:[(1,2,3),(0,1,0)]:}andB={:[(-1,4,3),(1,0,0)]:} Find 2A +3B.

If A = [(1,2),(3,-2),(-1,0)]and B = [(1,3,2),(4,-1,3)] then find the order of AB.

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-FOUR MARK QUESTIONS
  1. Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k...

    Text Solution

    |

  2. If x,y and zinR, and Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x...

    Text Solution

    |

  3. If |(1,a^2,a^4),(1,b^2,b^4),(1,c^2,c^4)|=k|(1,1,1),(a,b,c),(a^2,b^2,c^...

    Text Solution

    |

  4. Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

    Text Solution

    |

  5. |(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)...

    Text Solution

    |

  6. Using properties of determinants, prove that following: |"a"+"b"+2...

    Text Solution

    |

  7. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  8. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  9. |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(3abc-a^(3)-b^(3)-c^(3))

    Text Solution

    |

  10. Prove that | ((b+c)^2, a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2)|=2...

    Text Solution

    |

  11. Given A=[(0,-1,2),(2,-2,0)]andB-[(0,1),(1,0),(1,1)]. Find the product ...

    Text Solution

    |

  12. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |

  13. FInd x when |[x+a, a^2, a^3] , [x+b, b^2, b^3] , [x+c, c^2, c^3]|=0 wh...

    Text Solution

    |

  14. Express the matrix [3-2-4 3-2-5-1 1 2] as the sum of a symmetric and s...

    Text Solution

    |

  15. If x=-4 is a root of a Delta=|(x,2,3),(1,x,1),(3,2,x)|=0, then find th...

    Text Solution

    |

  16. Using properties of determinants. Find the value of 'x' |(4-x,4+x,4+...

    Text Solution

    |

  17. prove that |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(1-x),x(x-1)(x-2),x(x+1)(...

    Text Solution

    |

  18. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  19. If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence fin...

    Text Solution

    |

  20. It A=[(-1,2,0),(-1,1,1),(0,1,0)] show that A^(2)=A^(-1)

    Text Solution

    |