Home
Class 12
MATHS
If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show ...

If `A=[(2,-1,1),(-1,2,-1),(1,-1,2)]` show that `A^(2)-5A+4I=0`
Hence find `A^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( A^2 - 5A + 4I = 0 \) for the given matrix \( A \) and then find \( A^{-1} \). ### Step 1: Calculate \( A^2 \) Given: \[ A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \] To find \( A^2 \), we perform the matrix multiplication \( A \times A \). \[ A^2 = A \times A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row: - \( (2 \cdot 2) + (-1 \cdot -1) + (1 \cdot 1) = 4 + 1 + 1 = 6 \) - \( (2 \cdot -1) + (-1 \cdot 2) + (1 \cdot -1) = -2 - 2 - 1 = -5 \) - \( (2 \cdot 1) + (-1 \cdot -1) + (1 \cdot 2) = 2 + 1 + 2 = 5 \) - Second row: - \( (-1 \cdot 2) + (2 \cdot -1) + (-1 \cdot 1) = -2 - 2 - 1 = -5 \) - \( (-1 \cdot -1) + (2 \cdot 2) + (-1 \cdot -1) = 1 + 4 + 1 = 6 \) - \( (-1 \cdot 1) + (2 \cdot -1) + (-1 \cdot 2) = -1 - 2 - 2 = -5 \) - Third row: - \( (1 \cdot 2) + (-1 \cdot -1) + (2 \cdot 1) = 2 + 1 + 2 = 5 \) - \( (1 \cdot -1) + (-1 \cdot 2) + (2 \cdot -1) = -1 - 2 - 2 = -5 \) - \( (1 \cdot 1) + (-1 \cdot -1) + (2 \cdot 2) = 1 + 1 + 4 = 6 \) Thus, we have: \[ A^2 = \begin{pmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{pmatrix} \] ### Step 2: Calculate \( 5A \) Now we calculate \( 5A \): \[ 5A = 5 \times \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 10 & -5 & 5 \\ -5 & 10 & -5 \\ 5 & -5 & 10 \end{pmatrix} \] ### Step 3: Calculate \( 4I \) The identity matrix \( I \) for a 3x3 matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ 4I = 4 \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \] ### Step 4: Calculate \( A^2 - 5A + 4I \) Now we combine the results: \[ A^2 - 5A + 4I = \begin{pmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{pmatrix} - \begin{pmatrix} 10 & -5 & 5 \\ -5 & 10 & -5 \\ 5 & -5 & 10 \end{pmatrix} + \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \] Calculating each element: - First row: - \( 6 - 10 + 4 = 0 \) - \( -5 + 5 + 0 = 0 \) - \( 5 - 5 + 0 = 0 \) - Second row: - \( -5 + 5 + 0 = 0 \) - \( 6 - 10 + 4 = 0 \) - \( -5 + 5 + 0 = 0 \) - Third row: - \( 5 - 5 + 0 = 0 \) - \( -5 + 5 + 0 = 0 \) - \( 6 - 10 + 4 = 0 \) Thus, we have: \[ A^2 - 5A + 4I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] This proves that \( A^2 - 5A + 4I = 0 \). ### Step 5: Find \( A^{-1} \) From the equation \( A^2 - 5A + 4I = 0 \), we can rearrange it to find \( A^{-1} \): \[ A^2 = 5A - 4I \] Multiplying both sides by \( A^{-1} \): \[ A = 5I - 4A^{-1} \] Rearranging gives: \[ 4A^{-1} = 5I - A \] Thus, \[ A^{-1} = \frac{1}{4}(5I - A) \] Calculating \( 5I - A \): \[ 5I - A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} - \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{pmatrix} \] Thus, \[ A^{-1} = \frac{1}{4} \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{3}{4} \end{pmatrix} \] ### Final Answer \[ A^{-1} = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{3}{4} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|18 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

If A=[31-12], show that A^(2)-5A+7I=O. Hence,find A^(-1)

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[(5,3),(12,7)] , show that A^(2)-12A-I=0 . Hence find A^(-1) .

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

Find the inverse of each of the matrices given below : If A=[(-1,-1),(2,-2)] " show that " A^(2)+3A+4I_(2)=O and " hence find "A^(-1) .

If A=[(2,0,1),(2,1,3),(1,-1,0)] , then find (A^(2)-5A)

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-FOUR MARK QUESTIONS
  1. Find the value of k, if: |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=k...

    Text Solution

    |

  2. If x,y and zinR, and Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x...

    Text Solution

    |

  3. If |(1,a^2,a^4),(1,b^2,b^4),(1,c^2,c^4)|=k|(1,1,1),(a,b,c),(a^2,b^2,c^...

    Text Solution

    |

  4. Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

    Text Solution

    |

  5. |(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)...

    Text Solution

    |

  6. Using properties of determinants, prove that following: |"a"+"b"+2...

    Text Solution

    |

  7. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  8. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  9. |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(3abc-a^(3)-b^(3)-c^(3))

    Text Solution

    |

  10. Prove that | ((b+c)^2, a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2)|=2...

    Text Solution

    |

  11. Given A=[(0,-1,2),(2,-2,0)]andB-[(0,1),(1,0),(1,1)]. Find the product ...

    Text Solution

    |

  12. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |

  13. FInd x when |[x+a, a^2, a^3] , [x+b, b^2, b^3] , [x+c, c^2, c^3]|=0 wh...

    Text Solution

    |

  14. Express the matrix [3-2-4 3-2-5-1 1 2] as the sum of a symmetric and s...

    Text Solution

    |

  15. If x=-4 is a root of a Delta=|(x,2,3),(1,x,1),(3,2,x)|=0, then find th...

    Text Solution

    |

  16. Using properties of determinants. Find the value of 'x' |(4-x,4+x,4+...

    Text Solution

    |

  17. prove that |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(1-x),x(x-1)(x-2),x(x+1)(...

    Text Solution

    |

  18. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  19. If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence fin...

    Text Solution

    |

  20. It A=[(-1,2,0),(-1,1,1),(0,1,0)] show that A^(2)=A^(-1)

    Text Solution

    |