Home
Class 12
PHYSICS
x(1) = 5 sin omega t x(2) = 5 sin ...

`x_(1) = 5 sin omega t`
` x_(2) = 5 sin (omega t + 53^(@))`
`x_(3) = - 10 cos omega t`
Find amplitude of resultant SHM.

Text Solution

Verified by Experts

`x_(1) = 5sinomegat`
`x_(2) = 5 sin (omegat + 53^(@))`
`x_(3) = - 10 cos omegat`
we can write `x_(3) = 10 sin(omegat + 270^(@))`
Finding the resultant amplitude by vactor notation.

Resultant Amplitude `|R| = sqrt(8^(2) + 6^(2)) = 10` Ans.
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARMONIC MOTION

    RESONANCE|Exercise Board Level Exercise|24 Videos
  • SIMPLE HARMONIC MOTION

    RESONANCE|Exercise Exercise- 1, PART - I|25 Videos
  • SIMPLE HARMONIC MOTION

    RESONANCE|Exercise Advanced Level Problems|13 Videos
  • SEMICONDUCTORS

    RESONANCE|Exercise Exercise 3|88 Videos
  • TEST PAPERS

    RESONANCE|Exercise FST-3|30 Videos

Similar Questions

Explore conceptually related problems

x_(1) = 3 sin omega t x_(2) = 5 sin (omega t + 53^(@)) x_(3) = - 10 cos omega t Find amplitude of resultant SHM.

x_(1)= 5 sin (omega t + 30^(@)) , x2 = 10 cos ( omega t) Find amplitude of resultant SHM.

x_(1) = 5 sin (omegat + 30^(@)) x_(2) = 10 cos (omegat) Find amplitude of resultant SHM .

Three light waves combine at a certain point where thcir electric field components are E_(1) = E_(0) sin omega t , E_(2)= E_(0) sin(omega t +60^(@)) , E_(3)= E_(0) sin(omega t -30^(@)) . Find their resultant component E(t) at that point.

x_(1) = 3 sin omega t ,x_(2) = 4 cos omega t Find (i) amplitude of resultant SHM, (ii) equation of the resultant SHM.

If i_(1) = 3 sin omega t and i_(2) =6 cos omega t , then i_(3) is

Find the resultant amplitude of the following simple harmonic equations : x_(1) = 5sin omega t x_(2) = 5 sin (omega t + 53^(@)) x_(3) = - 10 cos omega t

x_(1) = 3 "sin" omega t , x_(2) = 4 "cos' omega t Find (i) amplitude of resultant SHM. (ii) equation of the resultant SHM.

x_(1) = 3 sin omega t implies x_(2) = 4 cos omega t . Find (i) amplitude of resultant SHm, (ii) equation of the resultant SHm.

If i_(1)=3 sin omega t and (i_2) = 4 cos omega t, then (i_3) is