Home
Class 12
MATHS
l n ((3)/(sqrt(3)))- ln (2+sqrt(3)) equa...

`l n ((3)/(sqrt(3)))- ln (2+sqrt(3))` equals (where `l nx = log_(e)x)`

A

`l n sqrt(3) +ln(2-sqrt(3))`

B

`ln 3- ln (2-sqrt(3))`

C

`ln 3 - ln (2-sqrt(3))`

D

`ln sqrt(3)+ln (2+sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

ln((3)/(sqrt(3)))-ln(2+sqrt(3)) equals (where ln x=log_(e)x)

If log_(sqrt(3))5=a and log_(sqrt(3))2=b then value of log_(sqrt(3))300 is

If A=log_(sqrt(3))(sqrt(3sqrt(3sqrt(3sqrt(3)))))* then the value of log_(sqrt(2))(8A+1) is equal to

Let L(f(x))=lim_(x rarr oo)(f(x+h)sqrt(f(x))-f(x)sqrt(f(x+h)))/(h) and L(log_(2)x) at x=16 is 't then (log_(2)c)/(2l) is equal to and L(log_(2)x)

If log_(sqrt(2)) sqrt(x) +log_(2) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

Find the number of solution of theta in[0,2 pi] satisfying the equation ((log)_(sqrt(3))tan theta(sqrt((log)_(tan theta)3+(log)_(sqrt(3))3sqrt(3))=-1

The value of e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x), is

If alpha, beta ar the roots of the quadratic equation x ^(2) -(3+ 2 ^(sqrt(log _(2)3))-3 ^(sqrt(log _(3)2)))x-2 (3 ^(log _(3)2)-2^(log _(z)3))=0, then the value of alpha ^(2) + alpha beta +beta^2 is equal to :